The ways that plant-feeding insects have diversified are central to our understanding of terrestrial ecosystems. Obligate nursery pollination mutualisms provide highly relevant model systems of how plants and their insect associates have diversified and the over 800 species of fig trees (Ficus) allow comparative studies. Fig trees can have one or more pollinating fig wasp species (Agaonidae) that breed within their figs, but factors influencing their number remain to be established. In some widely distributed fig trees, the plants form populations isolated by large swathes of sea, and the different populations are pollinated by different wasp species. Other Ficus species with
Ophiocordyceps sinensis (syn. Cordyceps sinensis), a traditional Chinese medicine called DongChongXiaCao (DCXC) in Chinese, is well known and has been used in Asia countries since the fifteenth century, and it contains some valuable medicinal component defined by modern pharmacological science. DCXC only appears at high altitudes on the Qinghai-Tibetan Plateau. Consequently, it is difficult to find and harvest. Because of its rarity and medicinal value, DCXC has always been one of the most expensive medicines known. As the price of DCXC has risen in recent years, thousands of migrants have entered into the various grasslands to search for them in season, which makes ecological environments of the grassland more fragile. In order to relieve the environmental pressures and protect this valuable resource, the artificial cultivation of DCXC involving two aspects of the genus Hepialus and the fungi of the host larvae should be employed and applied at the first available time point. In this article, the reproduction of moth larvae of the genus Hepialus is first described, which includes their ecological characteristics and the methods of artificial feeding. Second, the generation and isolation method of the fungi from DCXC are subsequently summarized, and then the mechanism of fungal spores to attack the moth larvae are restated. Finally, the basic model of artificial cultivation of DCXC is introduced; meanwhile, the potential application of modern biotechnology to the artificial cultivation is analyzed in prospect. This review article will not only expand people's knowledge regarding the artificial cultivation of DCXC, but also hopefully provide an informative reference for the development of this valuable resource and the environmental protection of alpine meadows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.