The engineering applications and related researches of 3D printing fiber-reinforced geopolymers are becoming more and more extensive. However, compared with traditional mould-casted cement-based materials, the properties of 3D-printed fiber-reinforced geopolymers are significantly different, and their interlayer bonding and anisotropy effects are less studied, so in-depth analysis and summary are needed. Similar to common cement-based materials, the reinforcement fibers for geopolymers include not only traditional fibers, such as steel fibers and carbon fibers, but also synthetic polymer fibers and natural polymer fibers. These fibers have unique properties, most of which have good mechanical properties and bonding properties with geopolymers, as well as excellent crack resistance and enhancement. This paper summarizes and analyzes the effects of traditional fibers, polymer fibers, plant fibers and other reinforcement fibers on the properties of 3D-printed fiber-reinforced geopolymers, especially on the interlayer bonding and anisotropy. The influence of the flow and thixotropic properties of fiber-reinforced fresh geopolymer on the weak bond and anisotropy between layers is summarized and analyzed. At the same time, the influence of fibers on the compressive strength, flexural strength and interlayer binding strength of the hardened geopolymers is investigated. The effect of fibers on the anisotropy of 3D-printed geopolymers and the methods to improve the interlayer binding degree are summarized. The limitations of 3D printing fiber-reinforced geopolymers are pointed out and some suggestions for improvement are put forward. Finally, the research on 3D printing fiber-reinforced geopolymers is summarized. This paper provides a reference for further improving the interlayer bonding strength of 3D-printed fiber-reinforced geopolymers. At the same time, the anisotropy properties of 3D-printed fiber-reinforced geopolymers are used to provide a basis for engineering applications.
The additional internal forces in vertical members caused by prestressed tendons are typically overlooked in the design of post-tensioned prestressed concrete. A calculation method for additional internal forces in single-story multi-span prestressed concrete frame columns based on equivalent lateral stiffness is proposed in this paper. The slope-deflection equation for the bar element was presented using Timoshenko beam assumptions, taking into account the influence of shear and bending deformations. Subsequently, the concept of equivalent lateral stiffness and calculation equations were proposed. On this basis, the equations of the third shear and third bending moment for single-story multi-span prestressed frame columns were established. Furthermore, applying engineering examples, the method in this study was verified by ABAQUS software and previous methods. The results show that theoretical values and FEA results are in good agreement. Compared to previous methods, the method in this paper is more accurate and widely applicable. In addition, the stretching plan has a significant path effect and time-varying effect on the interlayer distribution of the third moment. It should be considered at the building stage to check the calculation of the frame column.
In this paper, the fuzzy scattering problem with semicircular depressions on the boundary of a band-shaped elastic plate with steady SH guided wave incident is studied and an analytical solution is given. First, the SH guided wave is constructed by the guided wave expansion method, and then the scattered wave satisfying the free condition of the boundary stress of the strip domain is constructed by the cumulative mirror method. Finally, a definite solution equation is obtained based on the fact that the shear stress at the edge of the semi-circular recessed hole is zero. In this paper, the ambiguity of the number of waves and the width of the bands is taken into account. In order to avoid the irreversibility of interval algorithm and the difficulty of solving non-linear equations, the membership function of fuzzy quantity is segmented to make the membership degree and fuzzy quantity correspond respectively. A deterministic problem that translates into piecewise processing. Two numerical examples are given to examine the changes in fuzzy response of different numbers of fuzzy waves and fuzzy thicknesses to the dynamic stress concentration factor of the hoop at the collapse limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.