Storyline visualizations, which are useful in many applications, aim to illustrate the dynamic relationships between entities in a story. However, the growing complexity and scalability of stories pose great challenges for existing approaches. In this paper, we propose an efficient optimization approach to generating an aesthetically appealing storyline visualization, which effectively handles the hierarchical relationships between entities over time. The approach formulates the storyline layout as a novel hybrid optimization approach that combines discrete and continuous optimization. The discrete method generates an initial layout through the ordering and alignment of entities, and the continuous method optimizes the initial layout to produce the optimal one. The efficient approach makes real-time interactions (e.g., bundling and straightening) possible, thus enabling users to better understand and track how the story evolves. Experiments and case studies are conducted to demonstrate the effectiveness and usefulness of the optimization approach.
How do various topics compete for public attention when they are spreading on social media? What roles do opinion leaders play in the rise and fall of competitiveness of various topics? In this study, we propose an expanded topic competition model to characterize the competition for public attention on multiple topics promoted by various opinion leaders on social media. To allow an intuitive understanding of the estimated measures, we present a timeline visualization through a metaphoric interpretation of the results. The visual design features both topical and social aspects of the information diffusion process by compositing ThemeRiver with storyline style visualization. ThemeRiver shows the increase and decrease of competitiveness of each topic. Opinion leaders are drawn as threads that converge or diverge with regard to their roles in influencing the public agenda change over time. To validate the effectiveness of the visual analysis techniques, we report the insights gained on two collections of Tweets: the 2012 United States presidential election and the Occupy Wall Street movement.
Abstract. Existing key-word based image search engines return images whose title or immediate surrounding text contains the search term as a keyword. When the search term is ambiguous and means different things, the results often come in a mixed bag of different entities. This paper proposes a novel framework that understands the context and thus infers the most likely entity in the given image by disambiguating the terms in the context into the corresponding concepts from external knowledge in a process called conceptualization. The images can subsequently be clustered by the most likely associated entities. This approach outperforms the best competing image clustering techniques by 29.2% in NMI score. In addition, the framework automatically annotates each cluster of images by its key entities which allows users to quickly identify the images they want.
Clustering of images from search results can improve the user experience of image search. Most of the existing systems use both visual features and surrounding texts as signals for clustering while this paper demonstrates the use of an external knowledge base to make better sense out of the text signals in a prototype system called CISC. Once we understand the semantics of the text better, the result of the clustering is significantly improved. In addition to clustering the images by their semantic entities, our system can also conceptualize each image cluster into a set of concepts to represent the meaning of the cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.