Flowering time (time to flower after planting) is important for estimating plant development and grain yield for many crops including sorghum. Flowering time of sorghum can be approximated by counting the number of panicles (clusters of grains on a branch) across multiple dates. Traditional manual methods for panicle counting are time-consuming and tedious. In this paper, we propose a method for estimating flowering time and rapidly counting panicles using RGB images acquired by an Unmanned Aerial Vehicle (UAV). We evaluate three different deep neural network structures for panicle counting and location. Experimental results demonstrate that our method is able to accurately detect panicles and estimate sorghum flowering time.
Background
Environmental stress due to climate or pathogens is a major threat to modern agriculture. Plant genetic resistance to these stresses is one way to develop more resilient crops, but accurately quantifying plant phenotypic responses can be challenging. Here we develop and test a set of metrics to quantify plant wilting, which can occur in response to abiotic stress such as heat or drought, or in response to biotic stress caused by pathogenic microbes. These metrics can be useful in genomic studies to identify genes and genomic regions underlying plant resistance to a given stress.
Results
We use two datasets: one of tomatoes inoculated with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease, and another of soybeans exposed to water stress. For both tomato and soybean, the metrics predict the visual wilting score provided by human experts. Specific to the tomato dataset, we demonstrate that our metrics can capture the genetic difference of bacterium wilt resistance among resistant and susceptible tomato genotypes. In soybean, we show that our metrics can capture the effect of water stress.
Conclusion
Our proposed RGB image-based wilting metrics can be useful for identifying plant wilting caused by diverse stresses in different plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.