*Brdt is a testis-specific member of the distinctive BET sub-family of bromodomain motif-containing proteins, a motif that binds acetylated lysines and is implicated in chromatin remodeling. Its expression is restricted to the germ line, specifically to pachytene and diplotene spermatocytes and early spermatids. Targeted mutagenesis was used to generate mice carrying a mutant allele of Brdt, Brdt
⌬BD1, which lacks only the first of the two bromodomains that uniquely characterize BET proteins. Homozygous Brdt ⌬BD1/⌬BD1 mice were viable but males were sterile, producing fewer and morphologically abnormal sperm. Aberrant morphogenesis was first detected in step 9 elongating spermatids, and those elongated spermatids that were formed lacked the distinctive foci of heterochromatin at the peri-nuclear envelope. Quantitative reverse transcription (RT)-PCR showed threefold increased levels of histone H1t (Hist1h1t) in Brdt ⌬BD1/⌬BD1 testes and chromatin immunoprecipitation revealed that Brdt protein, but not Brdt ⌬BD1 protein, was associated with the promoter of H1t. Intracytoplasmic sperm injection suggested that the DNA in the Brdt ⌬BD1 mutant sperm could support early embryonic development and yield functional embryonic stem cells. This is the first demonstration that deletion of just one of the two bromodomains in members of the BET sub-family of bromodomain-containing proteins has profound effects on in vivo differentiation.
The BET subfamily of bromodomain-containing genes is characterized by the presence of two bromodomains and a unique ET domain at their carboxyl termini. Here, we show that the founding member of this subfamily, Brd2, is an essential gene by generating a mutant mouse line lacking Brd2 function. Homozygous Brd2 mutants are embryonic lethal, with most Brd2 ؊/؊ embryos dying by embryonic day 11.5. Before death, the homozygous embryos were notably smaller and exhibited abnormalities in the neural tube where the gene is highly expressed. Brd2-deficient embryonic fibroblast cells were observed to proliferate more slowly than controls. Experiments to explore whether placental insufficiency could be a cause of the embryonic lethality showed that injecting diploid mutant embryonic stem cells into tetraploid wild-type blastocysts did not rescue the lethality; that is Brd2-deficient embryos could not be rescued by wild-type extraembryonic tissues. Furthermore, there were enhanced levels of cell death in Brd2-deficient embryos. Developmental Dynamics 238:908 -917, 2009.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.