Kernel density estimation (KDE) is a statistical technique used to estimate the probability density function of a sample set with unknown density function. It is considered a fundamental data-smoothing problem for use with large datasets, and is widely applied in areas such as climatology and biometry. Due to the large volumes of data that these problems usually process, KDE is a computationally challenging problem. Current HPC platforms with built-in accelerators have an enormous computing power, but they have to be programmed efficiently in order to take advantage of that power. We have developed a novel strategy to compute KDE using bounded kernels, trying to minimize memory accesses, and implemented it as a parallel program targeting multi-core and many-core processors. The efficiency of our code has been tested with different datasets, obtaining impressive levels of acceleration when taking as reference alternative, state-of-the-art KDE implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.