The scenario that emerges from scientific research on the use of BIPV systems in architecture shows that photovoltaic technologies and systems have reached a significant development in production and installation, becoming a strategic approach in the field of energy efficiency and enabling a progressive decarbonisation of the building stock. Still, knowledge and methods of architectural integration are not fully developed, especially in Italy. The present paper reports the results of a research activity that, systematising the main criteria and indicators for assessing the integrability of BIPVs in architecture, has led to the development of BIPV Product and Case Study Catalogues that define an up-to-date state of the art on aspects of design and technological innovation using BIPV systems and components. Catalogues have been created with the objective of contributing to the growth of knowledge on the most up-to-date methods of design by implementing a ‘technology transfer’ from good practice, in which photovoltaic systems are an integral part of the design concept and construction techniques of the architecture. The analysis related to the production of BIPV systems and components and their application in architectural projects allows one to highlight the main critical factors in the diffusion throughout the country and to identify the main research demand arising from the specific national situation.
Countering climate impacts by increasing resilience is a pivotal issue in scientific debate, in which the awareness of the risks of extreme weather phenomena is growing. Cities have been revealed to be increasingly unsuited to the changing climate and vulnerable to it due to their settlement patterns, constructive practices and living habits. Scientifically addressing the issue of climate-proof design requires the development of knowledge models and processes capable of managing the complexity of information needed to guide the transformation of the built environment. In this paper, a model for assessing climate resilience scenarios for the heatwave phenomenon is proposed by implementing a database of technical climate-proof solutions for climate adaptation and mitigation aimed at increasing the indoor comfort and reducing the CO2 emissions of buildings. The model is implemented through a GIS-based framework and was tested on the city of Naples (Italy), measuring the reduction in the heatwave impact/risks determined by the selected climate-proof solutions. The test results show the effectiveness of the climate-proof solutions applied to the built environment through an increase in climate resilience. The framework provides support for planning climatic resilience design strategies at the building scale. It could be applied in future local climate adaptation plans or as a knowledge resource to achieve resilient built environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.