Grain boundaries (GBs) are known to play an important role in determining the mechanical and functional properties of nanocrystalline materials. In this study, we used molecular dynamics simulations to investigate the effects of damaged GBs on the mechanical properties of SiC that is irradiated by 10 keV Si atoms. The results reveal that irradiation promotes GB sliding and reduces the ability of GBs to block dislocations, which improves the deformation ability of nanocrystalline SiC. However, irradiation causes local rearrangements in disordered clusters and pinning of dislocations in the grain region, which restrains its deformation. These two mechanisms arise from the irradiation effects on GBs and grains, and these mechanisms compete in nanocrystalline SiC during irradiation. The irradiation effects on GBs dominate at low irradiation doses, and the effects on grains dominate at high doses; the result of these combined effects is a peak ductility of 0.09 dpa in nanocrystalline SiC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.