MR‐only treatment planning and MR‐IGRT leverage MRI's powerful soft tissue contrast for high‐precision radiation therapy. However, anthropomorphic MR‐compatible phantoms are currently limited. This work describes the development and evaluation of a custom‐designed, modular, pelvic end‐to‐end (PETE) MR‐compatible phantom to benchmark MR‐only and MR‐IGRT workflows. For construction considerations, subject data were assessed for phantom/skeletal geometry and internal organ kinematics to simulate average male pelvis anatomy. Various materials for the bone, bladder, and rectum were evaluated for utility within the phantom. Once constructed, PETE underwent CT‐SIM, MR‐Linac, and MR‐SIM imaging to qualitatively assess organ visibility. Scans were acquired with various bladder and rectal volumes to assess component interactions, filling capabilities, and filling reproducibility via volume and centroid differences. PETE simulates average male pelvis anatomy and comprises an acrylic body oval (height/width = 23.0/38.1 cm) and a cast‐mold urethane skeleton, with silicone balloons simulating bladder and rectum, a silicone sponge prostate, and hydrophilic poly(vinyl alcohol) foam to simulate fat/tissue separation between organs. Access ports enable retrofitting the phantom with other inserts including point/film‐based dosimetry options. Acceptable contrast was achievable in CT‐SIM and MR‐Linac images. However, the bladder was challenging to distinguish from background in CT‐SIM. The desired contrast for T1‐weighted and T2‐weighted MR‐SIM (dark and bright bladders, respectively) was achieved. Rectum and bone exhibited no MR signal. Inputted volumes differed by <5 and <10 mL from delineated rectum (CT‐SIM) and bladder (MR‐SIM) volumes. Increasing bladder and rectal volumes induced organ displacements and shape variations. Reproduced volumes differed by <4.5 mL, with centroid displacements <1.4 mm. A point dose measurement with an MR‐compatible ion chamber in an MR‐Linac was within 1.5% of expected. A novel, modular phantom was developed with suitable materials and properties that accurately and reproducibly simulate status changes with multiple dosimetry options. Future work includes integrating more realistic organ models to further expand phantom options.
As the static magnetic field strength used in human magnetic resonance imaging increases, the wavelength of the corresponding radiofrequency field becomes comparable to the dimensions of the coil and volume of interest. The dielectric resonance effects that arise in this full wavelength regime may be partially compensated for through the use of surface coils. A novel high-field (4 T) transceive surface coil array is presented that allows arbitrary surface coil placement and size while maintaining the ability to independently transmit and/or receive through conventional 50-⍀ power amplifiers and preamplifiers, respectively. A ninefold signal-to-noise ratio (SNR) increase is shown in close proximity to the transceive array and there is an overall 38% increase throughout the entire brain volume in comparison to the standard hybrid birdcage coil. Furthermore, the ability to independently transmit and receive through each surface coil within this array enables transmit and/or receiveonly fast parallel imaging techniques to be employed while maintaining the increased SNR sensitivity inherent to surface coil designs. Magn Reson Med 54:499 -503, 2005.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.