An acoustic reverberator consisting of a network of delay lines connected via
scattering junctions is proposed. All parameters of the reverberator are
derived from physical properties of the enclosure it simulates. It allows for
simulation of unequal and frequency-dependent wall absorption, as well as
directional sources and microphones. The reverberator renders the first-order
reflections exactly, while making progressively coarser approximations of
higher-order reflections. The rate of energy decay is close to that obtained
with the image method (IM) and consistent with the predictions of Sabine and
Eyring equations. The time evolution of the normalized echo density, which was
previously shown to be correlated with the perceived texture of reverberation,
is also close to that of IM. However, its computational complexity is one to
two orders of magnitude lower, comparable to the computational complexity of a
feedback delay network (FDN), and its memory requirements are negligible
This paper is concerned with an acoustical phenomenon called sweeping echo, which manifests itself in a room impulse response as a distinctive, continuous pitch increase. In this paper, it is shown that sweeping echoes are present (although to greatly varying degrees) in all perfectly rectangular rooms. The theoretical analysis is based on the rigid-wall image solution of the wave equation. Sweeping echoes are found to be caused by the orderly time-alignment of high-order reflections arriving from directions close to the three axial directions. While sweeping echoes have been previously observed in real rooms with a geometry very similar to the rectangular model (e.g. a squash court), they are not perceived in commonly encountered rooms. Room acoustic simulators such as the image method (IM) and finitedifference time-domain (FDTD) correctly predict the presence of this phenomenon, which means that rectangular geometries should be used with caution when the objective is to model commonly encountered rooms. Small out-of-square asymmetries in the room geometry are shown to reduce the phenomenon significantly. Randomization of the image sources' position is shown to remove sweeping echoes without the need to model an asymmetrical geometry explicitly. Finally, the performance of three speech and audio processing algorithms is shown to be sensitive to strong sweeping echoes, thus highlighting the need to avoid their occurrence. I. INTRODUCTION S PEECH and audio processing research studies often require a room acoustic model that is representative of common acoustical conditions. A simplified model of room geometry that is often used in the literature is the perfectly
Abstract-This paper presents a systematic framework for the analysis and design of circular multichannel surround sound systems. Objective analysis based on the concept of active intensity fields shows that for stable rendition of monochromatic plane waves it is beneficial to render each such wave by no more than two channels. Based on that finding, we propose a methodology for the design of circular microphone arrays, in the same configuration as the corresponding loudspeaker system, which aims to capture inter-channel time and intensity differences that ensure accurate rendition of the auditory perspective. The methodology is applicable to regular and irregular microphone/speaker layouts, and a wide range of microphone array radii, including the special case of coincident arrays which corresponds to intensity-based systems. Several design examples, involving first and higher-order microphones are presented. Results of formal listening tests suggest that the proposed design methodology achieves a performance comparable to prior art in the center of the loudspeaker array and a more graceful degradation away from the center.Index Terms-Active intensity, microphone array, microphone directivity, multichannel audio, spatial hearing, surround sound recording, tangent panning law, time-intensity trading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.