Cross-dataset transfer learning is an important problem in person re-identification (Re-ID). Unfortunately, not too many deep transfer Re-ID models exist for realistic settings of practical Re-ID systems. We propose a purely deep transfer Re-ID model consisting of a deep convolutional neural network and an autoencoder. The latent code is divided into metric embedding and nuisance variables. We then utilize an unsupervised training method that does not rely on co-training with non-deep models. Our experiments show improvements over both the baseline and competitors' transfer learning models.
Image and video retrieval by their semantic content has been an important and challenging task for years, because it ultimately requires bridging the symbolic/subsymbolic gap. Recent successes in deep learning enabled detection of objects belonging to many classes greatly outperforming traditional computer vision techniques. However, deep learning solutions capable of executing retrieval queries are still not available. We propose a hybrid solution consisting of a deep neural network for object detection and a cognitive architecture for query execution. Specifically, we use YOLOv2 and OpenCog. Queries allowing the retrieval of video frames containing objects of specified classes and specified spatial arrangement are implemented.
Manufacturers migrate their processes to Industry 4.0, which includes new technologies for improving productivity and efficiency of operations. One of the issues is capturing, recreating, and documenting the tacit knowledge of the aging workers. However, there are no systematic procedures to incorporate this knowledge into Enterprise Resource Planning systems and maintain a competitive advantage. This paper describes a solution proposal for a tacit knowledge elicitation process for capturing operational best practices of experienced workers in industrial domains based on a mix of algorithmic techniques and a cooperative game. We use domain ontologies for Industry 4.0 and reasoning techniques to discover and integrate new facts from textual sources into an Operational Knowledge Graph. We describe a concepts formation iterative process in a role game played by human and virtual agents through socialization and externalization for knowledge graph refinement. Ethical and societal concerns are discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.