To provide protective immunity against circulating primary HIV-1 strains, a vaccine most likely has to induce broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) spike. Recombinant Env trimers such as the prototype BG505 SOSIP.664 that closely mimic the native Env spike can induce autologous neutralizing antibodies (NAbs) against relatively resistant (tier 2) primary viruses. Ideally, Env immunogens should present broadly neutralizing antibody epitopes but limit the presentation of immunodominant non-NAb epitopes that might induce off-target and potentially interfering responses. The V3 loop in gp120 is such a non-NAb epitope that can effectively elicit non-NAbs when animals are immunized with SOSIP.664 trimers. V3 immunogenicity can be diminished, but not abolished, by reducing the conformational flexibility of trimers via targeted sequence changes, including an A316W substitution in V3, that create the SOSIP.v4.1 and SOSIP.v5.2 variants. Here, we further modified these trimer designs by introducing leucine residues at V3 positions 306 and 308 to create hydrophobic interactions with the tryptophan residue at position 316 and with other topologically proximal sites in the V1V2 domain. Together, these modifications further stabilized the resulting SOSIP.v5.2 S306L/R308L trimers in the prefusion state in which V3 is sequestered. When we tested these trimers as immunogens in rabbits, the induction of V3 non-NAbs was significantly reduced compared with the SOSIP.v5.2 trimers and even more so compared with the SOSIP.664 prototype, without affecting the autologous NAb response. Hence, these additional trimer sequence modifications may be beneficial for immunization strategies that seek to minimize off-target non-NAb responses.
The potential health risks associated with (re-)emerging positive-strand RNA (+RNA) viruses emphasizes the need for understanding host-pathogen interactions for these viruses. The innate immune system forms the first line of defense against pathogenic organisms like these and is responsible for detecting pathogen-associated molecular patterns (PAMPs). Viral RNA is a potent inducer of antiviral innate immune signaling, provoking an antiviral state by directing expression of interferons (IFNs) and pro-inflammatory cytokines. However, +RNA viruses developed various methods to avoid detection and downstream signaling, including isolation of viral RNA replication in membranous viral replication organelles (ROs). These structures therefore play a central role in infection, and consequently, loss of RO integrity might simultaneously result in impaired viral replication and enhanced antiviral signaling. This review summarizes the first indications that the innate immune system indeed has tools to disrupt viral ROs and other non- or aberrant-self membrane structures, and may do this by marking these membranes with proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC3) and ubiquitin, resulting in the recruitment of IFN-inducible GTPases. Further studies should evaluate whether this process forms a general effector mechanism in +RNA virus infection, thereby creating the opportunity for development of novel antiviral therapies.
Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.