During the last few years, users all over the world have become more and more accustomed to the availability of broadband access. This has boosted the use of a wide variety both of established and recent multimedia applications. However, there are cases where it is too expensive for network providers to serve a community of users. This is typically the case in rural and suburban areas, where there is slow deployment (or no deployment at all) of traditional wired technologies for broadband access (e.g., cable modems, xDSL). In those cases, the most promising opportunity rests with Broadband Wireless Access technologies, such as the IEEE 802.16, also known as WiMAX. One of the features of the MAC layer of 802.16 is that it is designed to differentiate service among traffic categories with different multimedia requirements. This article focuses on mechanisms that are available in an 802.16 system to support quality of service (QoS) and whose effectiveness is evaluated through simulation
Research in the Internet of Things (IoT) conceives a world where everyday objects are connected to the Internet and exchange, store, process, and collect data from the surrounding environment. IoT devices are becoming essential for supporting the delivery of data to enable electronic services, but they are not sufficient in most cases to host application services directly due to their intrinsic resource constraints. Fog Computing (FC) can be a suitable paradigm to overcome these limitations, as it can coexist and cooperate with centralized Cloud systems and extends the latter toward the network edge. In this way, it is possible to distribute resources and services of computing, storage, and networking along the Cloud-to-Things continuum. As such, FC brings all the benefits of Cloud Computing (CC) closer to end (user) devices. This article presents a survey on the employment of FC to support IoT devices and services. The principles and literature characterizing FC are described, highlighting six IoT application domains that may benefit from the use of this paradigm. The extension of Cloud systems towards the network edge also creates new challenges and can have an impact on existing approaches employed in Cloud-based deployments. Research directions being adopted by the community are highlighted, with an indication of which of these are likely to have the greatest impact. An overview of existing FC software and hardware platforms for the IoT is also provided, along with the standardisation efforts in this area initiated by the OpenFog Consortium (OFC).
The internet of things (IoT) is essential for the implementation of applications and services that require the ability to sense the surrounding environment through sensors and modify it through actuators. However, IoT devices usually have limited computing capabilities and hence are not always sufficient to directly host resource-intensive services. Fog computing, which extends and complements the cloud, can support the IoT with computing resources and services that are deployed close to where data are sensed and actions need to be performed. Virtualisation is an essential feature in the cloud as in the fog, and containers have been recently getting much popularity to encapsulate fog services. Besides, container migration among fog nodes may enable several emerging use cases in different IoT domains (e.g., smart transportation, smart industry). In this paper, we first report container migration use cases in the fog and discuss containerisation. We then provide a comprehensive overview of the state-of-the-art migration techniques for containers, i.e., cold, pre-copy, post-copy, and hybrid migrations. The main contribution of this work is the extensive performance evaluation of these techniques that we conducted over a real fog computing testbed. The obtained results shed light on container migration within fog computing environments by clarifying, in general, which migration technique might be the most appropriate under certain network and service conditions.
Over the last few years, standardisation efforts are consolidating the role of the Routing Protocol for Low-Power and Lossy Networks (RPL) as the standard routing protocol for IPv6-based Wireless Sensor Networks (WSNs). Although many core functionalities are well defined, others are left implementation dependent. Among them, the definition of an efficient link-quality estimation (LQE) strategy is of paramount importance, as it influences significantly both the quality of the selected network routes and nodesâ\u80\u99 energy consumption. In this paper, we present RL-Probe, a novel strategy for link quality monitoring in RPL, which accurately measures link quality with minimal overhead and energy waste. To achieve this goal, RL-Probe leverages both synchronous and asynchronous monitoring schemes to maintain up-to-date information on link quality and to promptly react to sudden topology changes, e.g. due to mobility. Our solution relies on a reinforcement learning model to drive the monitoring procedures in order to minimise the overhead caused by active probing operations. The performance of the proposed solution is assessed by means of simulations and real experiments. Results demonstrated that RL-Probe helps in effectively improving packet loss rates, allowing nodes to promptly react to link quality variations as well as to link failures due to node mobility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.