, Melissa Yssel, MB ChB, FC Path(SA) Chem
139, and Wendy M. Zakowicz, BS 79 Purpose: To achieve clinical validation of cutoff values for newborn screening by tandem mass spectrometry through a worldwide collaborative effort. Methods: Cumulative percentiles of amino acids and acylcarnitines in dried blood spots of approximately 25-30 million normal newborns and 10,742 deidentified true positive cases are compared to assign clinical significance, which is achieved when the median of a disorder range is, and usually markedly outside, either the 99th or the 1st percentile of the normal population. The cutoff target ranges of analytes and ratios are then defined as the interval between selected percentiles of the two populations. When overlaps occur, adjustments are made to maximize sensitivity and specificity taking all available factors into consideration.
Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.
Screening by tandem mass spectrometry provides a better outcome for patients at 6 years of age, with fewer deaths and fewer clinically significant disabilities.
Protocadherin 19 (PCDH19) female limited epilepsy (PCDH19-FE; also known as epilepsy and mental retardation limited to females, EFMR; MIM300088) is an infantile onset epilepsy syndrome with or without intellectual disability (ID) and autism. We investigated transcriptomes of PCDH19-FE female and control primary skin fibroblasts, which are endowed to metabolize neurosteroid hormones. We identified a set of 94 significantly dysregulated genes in PCDH19-FE females. Intriguingly, 43 of the 94 genes (45.7%) showed gender-biased expression; enrichment of such genes was highly significant (P = 2.51E-47, two-tailed Fisher exact test). We further investigated the AKR1C1-3 genes, which encode crucial steroid hormone-metabolizing enzymes whose key products include allopregnanolone and estradiol. Both mRNA and protein levels of AKR1C3 were significantly decreased in PCDH19-FE patients. In agreement with this, the blood levels of allopregnanolone were also (P < 0.01) reduced. In conclusion, we show that the deficiency of neurosteroid allopregnanolone, one of the most potent GABA receptor modulators, may contribute to PCDH19-FE. Overall our findings provide evidence for a role of neurosteroids in epilepsy, ID and autism and create realistic opportunities for targeted therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.