The human being, throughout his development, builds his personality and, from adolescence, many changes occur in the person's life, added to the new thoughts and ways of acting that arise. These transformations lead young people to look at their living space and at the activity developed by the family in an analytical and critical way, making them reflect on the present reality. Given this scenario, the present work sought to know the vision of young people in 3 Family Farming communities in the Southern Region of Bahia in relation to their perception of the place where they live and the family farming activity. The objectives were operationalized through the application of forms, following the ethical precepts of Resolution 466/12. The results indicate that the local youth still perceive the place as pleasant and with the potential to provide a pleasant life, however, as a professional possibility, Family Farming is not an option for the majority.
Abstract.The adoption of apparent soil electrical conductivity (soil ECa) sensors has increased in precision agricultural systems, especially in systems pulled by vehicles. This work developed a portable soil sensor for measuring soil ECa that could be used without vehicles in mountainous areas and small farms. The developed system was based on the electrical resistivity method. The system measured the electrical conductivity by applying a square wave signal at frequencies defined by the user. The acquired data were georeferenced using a low-cost global navigation satellite system (GNSS) receiver. The sensor system was developed using a BeagleBone Black, a low-cost single-board computer. A user interface was developed in C++, and a touch screen with a resolution of 800×480 pixels was used to display the results. This interface performed statistical analysis, and the results were used to guide the user to identify more field locations to be sampled to increase mapping accuracy. The system was tested in a coffee plantation located in a mountainous area and in a sugarcane plantation in Minas Gerais, Brazil. The system worked well in mapping the soil ECa. The apparent soil electrical conductivities measured using frequencies of 10, 20, 30, and 40 Hz were highly correlated. In the sugarcane field that had more variation in soil texture, a greater number of soil properties presented a significant correlation with the soil ECa. Keywords: Electrical conductivity, Geostatistics, Precision agriculture, Soil properties, Soil sensing, Spatial variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.