40Large volcanic eruptions on Earth commonly occur with collapse of the roof of a crustal magma 41 reservoir, forming a caldera. Only a few such collapses occur per century and lack of detailed 42 observations has obscured insight on mechanical interplay between collapse and eruption. We use Calderas are 1 -100 km diameter depressions found in volcanic regions of Earth and other planets. basaltic andesite) intrusive activity and eruptions (2,(9)(10)(11)(12). 59The consensus from field and modelling studies is that caldera collapse progresses from initial 60 surface downsag to fault-controlled subsidence (1, 8, 13, 14). The pre-collapse topography is obtained by subtracting the subsidence observed at the surface. As we recorded the caldera subsidence mainly on the ice (Fig. 1, Fig. S1), we made corrections and (Fig. 3A). We therefore conclude that suggestions of a large increase in ice flow out of the caldera 147 during these events (25) cannot be fitted with our data. 148Bedrock subsidence exceeding 1 m occurred within an area of 110 km 2 that extended beyond the 149 pre-existing caldera (Fig. 1, Fig. S1). After termination of collapse the total subsidence at the pre-150 existing caldera rims amounted to 3 to 11 meters ( Fig. 1D and 1E). Using subglacial radio-echo GPS station in the center of the caldera (Fig. 1A), including the rate of vertical rate of ice surface Cumulative number of M>4 caldera earthquakes, with magnitude evolution colored in red, blue and 176 grey representing clusters on the southern rim, the northern rim and smaller clusters, respectively 177 (see Fig. S5). E) Cumulative seismic moment for M>4 caldera earthquakes. from analysis of subaerial gas measurements (Fig. 4). This depth concurs with our regional on FTIR and Multi-GAS measurements (24). 194Seismicity and subsurface structure 195 We used seismic data and Distinct Element Method (DEM) numerical modelling (24), to 196 characterize the deeper collapse structure as the reactivation of a steeply-inclined ring fault (Fig. 5). 197We mostly observed seismicity at depths of 0-9 km beneath the northern and southern caldera rims 198( Fig. 5B), with earthquakes being more numerous on the northern rim. This spatial pattern of 199 seismicity is consistent with fracturing above a deflating magma reservoir that was elliptical in (Fig. 5C, D). Our best fitting models had preexisting faults dipping out at 80-85¡ from the caldera 207 center on the north side and at 85-90¡ toward the caldera center on the south side. The modeled pre- 208existing faults lay at 1-2 km below the surface on the north side and 3-4 km on the south side. 209Modeling of a more complex fault geometry or the inclusion of greater material heterogeneity may 210 further improve the data fit, but presently lacks robust geophysical constraints. components of the observed earthquakes at B ‡rdarbunga. We, however, narrowed down on 222 plausible solutions by using the micro-earthquakes (Fig. 5A). The moment tensor solutions are well 223 constrained, but the inferred d...
[1] Pit craters and calderas are volcanic depressions produced by subsidence of a magma reservoir roof. To identify how geometric and mechanical factors may influence the structural evolution of this subsidence, we used two-dimensional distinct element method numerical models. The reservoir host rock was represented as an assemblage of bonded circular particles that interact according to elastic-frictional laws. Varying particle and bond properties produced a range of bulk material properties characteristic of natural rock masses. Fracturing results when bonds break, once their shear or tensile strength is exceeded. The magma reservoir was represented as a region of nonbonded low-friction particles. Withdrawal of magma was simulated by incrementally reducing the area of the reservoir particles. Resultant gravity-driven failure and subsidence of the reservoir roof were explicitly replicated. Interaction of the roof's strength, Young's modulus, thickness/diameter ratio (T/D), and the reservoir's shape yields a variety of model structures and subsidence styles. In conceptual terms, four end-member subsidence styles developed: (1) "central sagging" favored by low strength and low T/D; (2) "central snapping" favored by high strength, low T/D, and a sill-like reservoir shape; (3) "single central block" favored by low to intermediate strength, high Young's modulus, and intermediate T/D; and (4) "multiple central blocks" favored by high strength, low Young's modulus, and high T/D. Most model realizations incorporated some combination of each style, however. The models provide a geomechanical framework for understanding natural pit crater or caldera structures, as at Nindiri (Nicaragua), Fernandina (Galapagos), Dolomieu (La Reunion), and Miyakejima (Japan).
International audienceGravitational deformation strongly infl uences the structure and eruptive behavior of large volcanoes. Using scaled analog models, we characterize a range of structural architectures produced by volcano sagging and volcano spreading. These arise from the interplay of variable basement rigidity and volcano-basement (de-)coupling. From comparison to volcanoes on Earth (La Réunion and Hawaii) and Mars (Elysium and Olympus Montes), the models highlight a structural continuum in which large volcanoes throughout the Solar System lie
Ground subsidence and sinkhole collapse are phenomena affecting regions of karst geology worldwide. The rapid development of such phenomena around the Dead Sea in the last four decades poses a major geological hazard to the local population, agriculture and industry. Nonetheless many aspects of this hazard are still incompletely described and understood, especially on the eastern Dead Sea shore. In this work, we present a first low altitude (< 150 m above ground) aerial photogrammetric survey with a Helikite Balloon at the sinkhole area of Ghor Al-Haditha, Jordan. We provide a detailed qualitative and quantitative analysis of a new, high resolution digital surface model (5 cm px −1) and orthophoto of this area (2.1 km 2). We also outline the factors affecting the quality and accuracy of this approach. Our analysis reveals a kilometer-scale sinuous depression bound partly by flexure and partly by nontectonic faults. The estimated minimum volume loss of this subsided zone is 1.83 • 10 6 m 3 with an average subsidence rate of 0.21 m yr −1 over the last 25 years. Sinkholes in the surveyed area are localized mainly within this depression. The sinkholes are commonly elliptically shaped (mean eccentricity 1.31) and clustered (nearest neighbor ratio 0.69). Their morphologies and orientations depend on the type of sediment they form in: in mud, sinkholes have a low depth to diameter ratio (0.14) and a long-axis azimuth of NNE-NE. In alluvium, sinkholes have a higher ratio (0.4) and are orientated NNW-N. From field work, we identify actively evolving artesian springs and channelized, sediment-laden groundwater flows that appear locally in the main depression. Consequently, subrosion, i.e. subsurface mechanical erosion, is identified as a key physical process, in addition to dissolution, behind the subsidence and sinkhole hazard. Furthermore, satellite image analysis links the development of the sinuous depression and sinkhole formation at Ghor Al-Haditha to preferential groundwater flow paths along ancient and current wadi riverbeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.