The application of synthetic cancellous bone has been shown to be highly successful when its architecture mimics that of the naturally interconnected trabeculae bone it aims to replace. The following investigation demonstrates the potential use of marine sponges as precursors in the production of ceramic based tissue engineered bone scaffolds. Three species of natural sponge, Dalmata Fina (Spongia officinalis Linnaeus, Adriatic Sea), Fina Silk (Spongia zimocca, Mediterranean) and Elephant Ear (Spongia agaricina, Caribbean) were selected for replication. A high solid content (80 %wt), low viscosity (126 mPas) hydroxyapatite slurry was developed, infiltrated into each sponge species and subsequently sintered, producing a scaffold structure that replicated pore architecture and interconnectivity of the precursor sponge. The most promising of the ceramic tissue engineered bone scaffolds developed, Spongia agaricina replicas, demonstrated an overall porosity of 56-61% with 83% of the pores ranging between 100 and 500 microm (average pore size 349 microm) and an interconnectivity of 99.92%.
Key to various bone substitute scaffold production techniques is the development of free-flowing ceramic slurry with optimum theological properties. The aim is to achieve a colloidal suspension with as high a solid content as possible while maintaining a low viscosity which easily penetrates the pores of relevant sacrificial templates. The following investigation describes the optimization of a hydroxyapatite slip and demonstrates its potential application in scaffold production. Using predominantly spherical particles of hydroxyapatite of between 0.82 microm and 16.2 microm, coupled with a 2 wt % addition of the anionic polyelectrolyte, ammonium polyacrylate, an 80 wt % (55.9 vol%) hydroxyapatite solid loaded slip with a viscosity of approximately 126mPas has been developed. Its ability to infiltrate and replicate porous preforms has been shown using polyurethane foam. The enhanced particle packing achieved has allowed for the production of scaffolds with highly dense and uniform grain structures. The results represent a significant improvement in current slurry production techniques and can be utilized to develop high-density ceramic bone substitute scaffolds.
The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4–0.45), plunger rate (5–20 mm/min), and tapering the barrel exit (45°–90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.