This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins.
The EU H2020 MaRINET2 project has a goal to improve the quality, robustness and accuracy of physical modelling and associated testing practices for the offshore renewable energy sector. To support this aim, a round robin scale physical modelling test programme was conducted to deploy a common wave energy converter at four wave basins operated by MaRINET2 partners. Test campaigns were conducted at each facility to a common specification and test matrix, providing the unique opportunity for intercomparison between facilities and working practices. A nonproprietary hinged raft, with a nominal scale of 1:25, was tested under a set of 12 irregular sea states. This allowed for an assessment of power output, hinge angles, mooring loads, and six-degree-of-freedom motions. The key outcome to be concluded from the results is that the facilities performed consistently, with the majority of variation linked to differences in sea state calibration. A variation of 5–10 % in mean power was typical and was consistent with the variability observed in the measured significant wave heights. The tank depth (which varied from 2–5 m) showed remarkably little influence on the results, although it is noted that these tests used an aerial mooring system with the geometry unaffected by the tank depth. Similar good agreement was seen in the heave, surge, pitch and hinge angle responses. In order to maintain and improve the consistency across laboratories, we make recommendations on characterising and calibrating the tank environment and stress the importance of the device–facility physical interface (the aerial mooring in this case).
This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.
This research presents a methodology for carrying out uncertainty analysis on measurements made during wave basin testing of an oscillating water column wave energy converter. Values are determined for Type A and Type B uncertainty for each parameter of interest, and uncertainty is propagated using the Monte Carlo method to obtain an overall Expanded Uncertainty with a 95% confidence level associated with the Capture Width Ratio of the device. An analysis into the impact of reflections on the experimental results reveals the importance of identifying the incident and combined wave field at each measurement location used to determine device performance, in order to avoid misleading results.
There is an urgent need to replace carbon-based energy sources with renewable energy sources, and floating offshore wind is seen as a critical component in the drive towards energy diversification. Floating offshore wind facilitates accessing a far vaster wind resource that exists in deeper waters, further offshore. Floating offshore wind platforms must undergo wave tank testing in the early stages of development to assess model responses to different wave and wind conditions. Wave tank testing, while highly beneficial, is liable to have errors arising throughout the testing campaign. Errors can arise during wave tank setup, testing, and analysis of results. One such error is the error in the inertia and centre of gravity (CoG) of the platform. In this research, testing was completed using two very different floating offshore wind concepts. A sensitivity analysis was completed by varying the model inertia and centre of gravity. It was found that the effects of each variation were magnified at resonance, and the magnitude of platform response was affected to a greater extent than the period of resonance response. Of all the variations to the model properties conducted, the inertia about the y-axis and location of the centre of gravity along the x-axis affected pitch response to the greatest extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.