Glutathione (GSH), glutathione S-transferase (GST), and glutathione conjugate export pump (GS-X pump) have been shown to participate collectively in the detoxification of many anticancer drugs, including cisplatin. Identification and regulation of the rate-limiting step in the overall system for cisplatin detoxification is of crucial importance for sensitization of human tumor cells to cisplatin. In this study, the GSH content, GST activity, and GS-X pump activity were regulated separately to examine effects of the regulation on cisplatin cytotoxicity and cisplatin-induced DNA interstrand cross-links (ICL) in HepG2 cells. Seventy-percent depletion of GSH by buthionine sulfoximine (BSO) and 50% increase of GSH by monoethyl GSH ester (GSHe) potentiated and decreased cisplatin cytotoxicity, respectively. This was reflected by a significant decrease and increase of their respective IC(50) values by 62 and 107%. Cisplatin-induced ICL was also potentiated by depletion of GSH by BSO and decreased by enrichment of GSH by GSHe, as shown by a 125% increase and a 34% decrease of cross-linked DNA compared with control samples exposed to cisplatin alone (p = 0.008 and 0.03, respectively). On the other hand, inhibition of GST and GS-X pump by ethacrynic acid, quercetin, tannic acid, and indomethacin at concentrations that inhibited activities of GST and GS-X pump by more than 50% had no significant effects on cisplatin cytotoxicity and cisplatin-induced DNA ICL in these cells. The results showed that of the parameters measured, intracellular GSH seems to be the rate-limiting factor, and its regulation would provide a more promising strategy for sensitization of human liver tumor cells to cisplatin.
The poor mechanical strength and vasoactivity of current small-diameter tissue engineered blood vessels (TEBVs) remain unsolved problems. Given the plasticity of smooth muscle cells (SMCs), 1 of the main limitations of current scaffolding techniques is the difficulty in controlling SMC phenotype shifts in vitro. A synthetic phenotype allows the cells to rapidly proliferate and produce extracellular matrix (ECM), whereas a shift to contractile phenotype with organized ECM ultimately provides a functional blood vessel. In this study, 3D deep (65 microm) and wide microchannels separated by high-aspect ratio (8) microwalls were successfully ultraviolet (UV) microembossed using a liquid UV polymerizable biodegradable macromer (poly(epsilon-caprolactone-r-L-lactide-r-glycolide) diacrylate) and the in vitro guidance effects of varying channel width (40-160 microm) on SMCs were verified. The results show that SMCs cultured in the wider microchannels (80-160 microm wide) switch from fibroblast morphology and random orientation to spindle-shaped morphology, and align along the direction of the microchannel nearing confluence achieved with similar cell density to unpatterned film. Further, an enhanced expression of smooth muscle alpha-actin of SMCs grown on micropatterns was found nearing confluence, which demonstrates a phenotype shift to a more contractile phenotype. These films are flexible and can be folded into tubular and lamellar structures for tissue engineering of small-diameter TEBVs as well as other organs such as esophagus or intestine. These results suggest that these micropatterned synthetic biodegradable scaffolds may be useful for guiding SMCs to grow into functional, small-diameter vascular grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.