A new method based on a solution graft technique was used to prepare poly (vinylidene fluoride) grafted polystyrene sulfonated acid (PVDF-g-PSSA) proton exchange membrane. Polystyrene is grafted into PVDF modified by plain sodium silicate (Na4SiO4). There is a linear relationship between the degree of grafting and the content of Na4SiO4. Fourier transform infrared spectroscopy is used to characterize changes of the membrane's microstructures after grafting and sulfonation. The morphology of the membrane's microstructures after grafting and sulfonation is studied by scanning electrolytic microscope (SEM). The effect of plain sodium silicate (Na4SiO4) concentration and relative humidity on the conductivity of the electrolyte was investigated by the impedance at room temperature. The results show that the styrene has been grafted into PVDF. The conductivity of PVDF-g-PSSA electrolyte doped 10% plain sodium silicate (Na4SiO4) is 0.016 S/cm at room temperature. The conductivity of the electrolyte changes slightly at a relative humidity range of 20%-70%. The weightlessness of PVDF-g-PSSA electrolyte heated to 40°C was less than 2%, which indicated that water capacity was good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.