The present speciation method reports the determination of inorganic arsenic forms, using metallic furnace hydride generation atomic absorption spectrometry. The inorganic As speciation is carried out using mild conditions for hydride formation, such as slightly acid pH media (4.50) and low tetrahydridoborate(1-) concentration (0.1% (w/v)). Limits of detection and quantification of 2.0 and 6.6 μg L(-1) of iAs(III) are obtained using optimized conditions. Additionally, microwave-assisted extraction using water as solvent is carried out to provide the appropriate environment for As species extraction as well as impeding inter-conversion between species. With these analytical strategies, As was accurately determined (at 99.9% confidence level) in water and plankton samples.
Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.