Introduction: 12-lead electrocardiogram (ECG) is recorded during atrial fibrillation (AF) catheter ablation procedure (CAP). It is not easy to determine if CAP was successful without a long follow-up assessing for AF recurrence (AFR). Therefore, an AFR risk prediction algorithm could enable a better management of CAP patients. In this research, we extracted features from 12-lead ECG recorded before and after CAP and train an AFR risk prediction machine learning model. Methods: Pre-and post-CAP segments were extracted from 112 patients. The analysis included a signal quality criterion, heart rate variability and morphological biomarkers engineered from the 12lead ECG (804 features overall). 43 out of the 112 patients (n) had AFR clinical endpoint available. These were utilized to assess the feasibility of AFR risk prediction, using either pre or post CAP features. A random forest classifier was trained within a nested cross validation framework. Results: 36 features were found statistically significant for distinguishing between the pre and post surgery states (n=112). For the classification, an area under the receiver operating characteristic (AUROC) curve was reported with AU ROC pre = 0.64 and AU ROC post = 0.74 (n=43). Discussion and conclusions: This preliminary analysis showed the feasibility of AFR risk prediction. Such a model could be used to improve CAP management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.