BackgroundThe study of craniofacial development is important in understanding the ontogenetic processes behind morphological diversity. A complete morphological description of the embryonic skull development of the Egyptian cobra, Naja h. haje, is lacking and there has been little comparative discussion of skull development either among elapid snakes or between them and other snakes.Methodology/Principal FindingsWe present a description of skull development through a full sequence of developmental stages of the Egyptian cobra, and compare it to other snakes. Associated soft tissues of the head are noted where relevant. The first visible ossification centres are in the supratemporal, prearticular and surangular, with slight ossification visible in parts of the maxilla, prefrontal, and dentary. Epiotic centres of ossification are present in the supraoccipital, and the body of the supraoccipital forms from the tectum posterior not the tectum synoticum. The venom glands are visible as distinct bodies as early at stage 5 and enlarge later to extend from the otic capsule to the maxilla level with the anterior margin of the eye. The gland becomes more prominent shortly before hatching, concomitant with the development of the fangs. The tongue shows incipient forking at stage 5, and becomes fully bifid at stage 6.Conclusions/SignificanceWe present the first detailed staging series of cranial development for the Egyptian cobra, Naja h. haje. This is one of the first studies since the classical works of G. de Beer and W. Parker that provides a detailed description of cranial development in an advanced snake species. It allows us to correct errors and misinterpretations in previous accounts which were based on a small sample of specimens of uncertain age. Our results highlight potentially significant variation in supraoccipital formation among squamates and the need for further research in this area.
Studying the in ovo mode of development of squamates has the advantage of allowing easy access to embryos without surgically compromising gravid females. Despite the non-ophidian squamates being a very diverse lineage of reptiles, embryonic tables for individuals of this group are very few. Here, I present the first in ovo embryonic table for a basal multi-scansored, pad-bearing gecko, Tarentola annularis. In this gecko, only the III and IV digits bear claws. Eleven embryonic stages are described based on chronological development of morphological characteristics. In contrast to other previously studied geckos, this species exhibits a longer incubation period. Comparison with other squamates, embryonic development of T. annularis is an indicative of a conserved developmental strategy. Interestingly, the clawless digits of this gecko do exhibit claws during the first half of embryonic development. Thus, regression of claws in these digits could be an advantage of studying this particular taxon, as it raises the question, to be answered in future study, of which mechanisms could be responsible for such claw regression. Before hatching, the outer periderm layer sloughs revealing the functional setae. The present study provides not only a model for pentadactyl limbs and digit development, but also an example of a unique developmental phenomenon, as represented by claw regression.
Femoral gland secretions are believed to play an important role in chemical communication and social organization of lizards. In spite of this, few studies have investigated the chemical composition and the behavioural roles of these secretions. The lacertid lizard Acanthodactylus boskianus is a good example, having these welldeveloped glands in both sexes. We used GC-MS chemical analysis of gland secretions and y-maze choice test bioassays to investigate the ability of the lizards to detect and respond to different synthetic blends made from compounds identified in the gland secretions. Based upon the GC-MS quantification data, we selected representatives of the main chemical groups (steroids, alcohols, acids, alkanes) detected in the lizard secretions and used these in a behavioural bioassay against controls. Males showed significant avoidance behaviour for cholesterol and alcohol blends, combined with agonistic behaviour towards these stimuli. Females did not show any significant selection to particular odour combinations. The data support the hypotheses that lizards can potentially use femoral gland secretions in chemical odour trails and utilize scent to mark territories and potentially also to establish dominance hierarchies. Cholesterol and long chain alcohols are suggested as potential candidates functioning as scent marking pheromones in A. boskianus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.