The different stages involved in coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. Remediation of these contaminated soils can be carried out by application of industrial organic sludge if the concerns regarding the potential negative environmental impacts of this experimental practice are properly addressed. In this context, the objective of this study was to use ecotoxicological tests to determine the quantity of organic industrial sludge that is required as a soil amendment to restore soil production while avoiding environmental impact. Chemical analysis of the solids (industrial sludge and soil) and their leachates was carried out as well as a battery of ecotoxicity tests on enzymes (hydrolytic activity), bacteria, algae, daphnids, earthworms, and higher plants, according to standardized methodologies. Solid and leachate samples of coal-contaminated soil were more toxic than those of industrial sludge towards enzyme activity, bacteria, algae, daphnids, and earthworms. In the case of the higher plants (lettuce, corn, wild cabbage, and Surinam cherry) the industrial sludge was more toxic than the coal-contaminated soil, and a soil/sludge mixture (66:34% dry weight basis) had a stimulatory effect on the Surinam cherry biomass. The ecotoxicological assessment of the coal-contaminated soil remediation using sludge as an amendment is very important to determine application rates that could promote a stimulatory effect on agronomic species without negatively affecting the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.