Background Unlike Papanicolaou tests, there are no commercially available computer‐assisted automated screening systems for urine specimens. Despite The Paris System for Reporting Urinary Cytology, there still is poor interobserver agreement with urine cytology and many cases in which a definitive diagnosis cannot be made. In the current study, the authors have reported on the development of an image algorithm that applies computational methods to digitized liquid‐based urine cytology slides. Methods A total of 2405 archival ThinPrep glass slides, including voided and instrumented urine cytology cases, were digitized. A deep learning computational pipeline with multiple tiers of convolutional neural network models was developed for processing whole slide images (WSIs) and predicting diagnoses. The algorithm was validated using a separate test data set comprised of consecutive cases encountered in routine clinical practice. Results There were 1.9 million urothelial cells analyzed. An average of 5400 urothelial cells were identified in each WSI. The algorithm achieved an area under the curve of 0.88 (95% CI, 0.83‐0.93). Using the optimal operating point, the algorithm's sensitivity was 79.5% (95% CI, 64.7%‐90.2%) and the specificity was 84.5% (95% CI, 81.6%‐87.1%) for high‐grade urothelial carcinoma. Conclusions The authors successfully developed a computational algorithm capable of accurately analyzing WSIs of urine cytology cases. Compared with prior studies, this effort used a much larger data set, exploited whole slide–level and not just cell‐level features, and used a cell gallery to display the algorithm's output for easy end‐user review. This algorithm provides computer‐assisted interpretation of urine cytology cases, akin to the machine learning technology currently used for automated Papanicolaou test screening.
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancement in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration has ushered in the era of radiomics, a paradigm shift that holds tremendous potential in clinical decision support as well as drug discovery. However, there are important issues to consider to incorporate radiomics into a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the components of the strategy pipeline, from clinical implementation to building enterprise solutions.
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancements in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration have ushered us into the era of radiomics, which has tremendous potential in clinical decision support as well as drug discovery. There are important issues to consider to incorporate radiomics as a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that to enterprise development (Part 2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.