We give conditions for the linear span of the positive L-weakly compact (resp. M-weakly compact) operators to be a Banach lattice under the regular norm, for that Banach lattice to have an order continuous norm, to be an AL-space or an AM-space.
Let T be an L-weakly compact operator defined on a Banach lattice E without order continuous norm. We prove that the bounded operator S defined on a Banach space X has a nontrivial closed invariant subspace if there exists an operator in the commutant of S that is quasi-similar to T. Additively, some similar and relevant results are extended to a larger classes of operators called super right-commutant. We also show that quasi-similarity need not preserve L-weakly or M-weakly compactness.
In this study, we present invariant subspaces (subideals) for a class of operators (positive operators) related to M-weakly and L-weakly compact operators. Principally, these invariant subspaces can be conceivable for all operators that commutes with any M-weakly or L-weakly compact operator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.