In this paper, a novel orthogonal frequency division multiplexing (OFDM) scheme, called OFDM with index modulation (OFDM-IM), is proposed for operation over frequency-selective and rapidly time-varying fading channels. In this scheme, the information is conveyed not only by M-ary signal constellations as in classical OFDM, but also by the indices of the subcarriers, which are activated according to the incoming bit stream. Different low complexity transceiver structures based on maximum likelihood detection or log-likelihood ratio calculation are proposed and a theoretical error performance analysis is provided for the new scheme operating under ideal channel conditions. Then, the proposed scheme is adapted to realistic channel conditions such as imperfect channel state information and very high mobility cases by modifying the receiver structure. The approximate pairwise error probability of OFDM-IM is derived under channel estimation errors. For themobility case, several interference unaware/aware detection methods are proposed for the new scheme. It is shown via computer simulations that the proposed scheme achieves significantly better error performance than classical OFDM due to the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel conditions
Email\ud Print\ud Request Permissions\ud A novel multiple-input multiple-output (MIMO) transmission scheme, called space-time block coded spatial modulation (STBC-SM), is proposed. It combines spatial modulation (SM) and space-time block coding (STBC) to take advantage of the benefits of both while avoiding their drawbacks. In the STBC-SM scheme, the transmitted information symbols are expanded not only to the space and time domains but also to the spatial (antenna) domain which corresponds to the on/off status of the transmit antennas available at the space domain, and therefore both core STBC and antenna indices carry information. A general technique is presented for the design of the STBC-SM scheme for any number of transmit antennas. Besides the high spectral efficiency advantage provided by the antenna domain, the proposed scheme is also optimized by deriving its diversity and coding gains to exploit the diversity advantage of STBC. A low-complexity maximum likelihood (ML) decoder is given for the new scheme which profits from the orthogonality of the core STBC. The performance advantages of the STBC-SM over simple SM and over V-BLAST are shown by simulation results for various spectral efficiencies and are supported by the derivation of a closed form expression for the union bound on the bit error probability
Visible light communications (VLC) is a promising and uncharted new technology for the next generation of wireless communication systems. This paper proposes a novel generalized light emitting diode (LED) index modulation method for multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) based VLC systems. The proposed scheme avoids the typical spectrum efficiency losses incurred by time and frequency domain shaping in OFDM signals. This is achieved by exploiting spatial multiplexing along with LED index modulation. Accordingly, real and imaginary components of the complex time domain OFDM signals are separated first, then resulting bipolar signals are transmitted over a VLC channel by encoding sign information in LED indexes. As a benchmark, we demonstrate the performance analysis of our proposed system for both analytical and physical channel models. Furthermore, two novel receiver designs are proposed. Each one is suitable for frequency-flat or selective channel scenarios. It has been shown via extensive computer simulations that the proposed scheme achieves considerably better bit error ratio (BER) vs. signal-tonoise-ratio (SNR) performance than the existing VLC-MIMO-OFDM systems that use the same number of transmit and receive units (LEDs and photo diodes (PDs)). Compared with the singleinput single-output (SISO) DC biased optical OFDM (DCO-OFDM) system, both spectral efficiency and DC bias can be doubled and removed respectively simply by exploiting a MIMO configuration.
Email\ud Print\ud Request Permissions\ud Spatial modulation (SM), in which multiple antennas are used to convey information besides the conventional M-ary signal constellations, is a new multiple-input multiple-output (MIMO) transmission technique, which has recently been proposed as an alternative to V-BLAST (vertical Bell Labs layered space-time). In this paper, a novel MIMO transmission scheme, called spatial modulation with trellis coding (SM-TC), is proposed. Similar to the conventional trellis coded modulation (TCM), in this scheme, a trellis encoder and an SM mapper are jointly designed to take advantage of the benefits of both. A soft decision Viterbi decoder, which is fed with the soft information supplied by the optimal SM decoder, is used at the receiver. A pairwise error probability (PEP) upper bound is derived for the SM-TC scheme in uncorrelated quasi-static Rayleigh fading channels. From the PEP upper bound, code design criteria are given and then used to obtain new 4-, 8- and 16-state SM-TC schemes using quadrature phase-shift keying (QPSK) and 8-ary phase-shift keying (8-PSK) modulations for 2,3 and 4 bits/s/Hz spectral efficiencies. It is shown via computer simulations and also supported by a theoretical error performance analysis that the proposed SM-TC schemes achieve significantly better error performance than the classical space-time trellis codes and coded V-BLAST systems at the same spectral efficiency, yet with reduced decoding complexity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.