Membrane fusion along the endocytic pathway occurs in a sequence of tethering, docking, and fusion. At endosomes and vacuoles, the CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) tethering complexes require their organelle-specific Rabs for localization and function. Until now, despite the absence of experimental evidence, it has been assumed that CORVET is a membrane-tethering factor. To test this theory and understand the mechanistic analogies with the HOPS complex, we set up an in vitro system, and establish CORVET as a bona-fide tether for Vps21-positive endosome/vacuole membranes. Purified CORVET binds to SNAREs and Rab5/Vps21-GTP. We then demonstrate that purified CORVET can specifically tether Vps21-positive membranes. Tethering via CORVET is dose-dependent, stimulated by the GEF Vps9, and inhibited by Msb3, the Vps21-GAP. Moreover, CORVET supports fusion of isolated membranes containing Vps21. In agreement with its role as a tether, overexpressed CORVET drives Vps21, but not the HOPS-specific Ypt7 into contact sites between vacuoles, which likely represent vacuole-associated endosomes. We therefore conclude that CORVET is a tethering complex that promotes fusion of Rab5-positive membranes and thus facilitates receptor down-regulation and recycling at the late endosome.endolysosomal system | Rab GTPase
The HOPS tethering complex binds both the Rab7-like Ypt7 and SNAREs. Several HOPS mutants are used to show that both Rab-binding sites, but not the ALPS motif in Vps41, are necessary to tether and fuse membranes.
Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.