Frogs play important ecological roles, and several species are important model organisms for scientific research. The globally distributed Ranidae (true frogs) are the largest frog family, and have substantial evolutionary distance from the model laboratory Xenopus frog species. Unfortunately, there are currently no genomic resources for the former, important group of amphibians. More widely applicable amphibian genomic data is urgently needed as more than two-thirds of known species are currently threatened or are undergoing population declines. We report a 5.8 Gbp (NG50 = 69 kbp) genome assembly of a representative North American bullfrog (Rana [Lithobates] catesbeiana). The genome contains over 22,000 predicted protein-coding genes and 6,223 candidate long noncoding RNAs (lncRNAs). RNA-Seq experiments show thyroid hormone causes widespread transcriptional change among protein-coding and putative lncRNA genes. This initial bullfrog draft genome will serve as a key resource with broad utility including amphibian research, developmental biology, and environmental research.
Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation, including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we performed LRS around 15×–40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes and genomes. Systematic assessment of LRS coverage showed that ~35 Mb of the human reference genome was only accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35 Mb of the genome that was only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome variation.
In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates) catesbeiana) and the African clawed frog (Xenopus laevis). We used high throughput RNA sequencing (RNA-seq) data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.