In this study, the predictability of the most liquid twelve cryptocurrencies are analyzed at the daily and minute level frequencies using the machine learning classification algorithms including the support vector machines, logistic regression, artificial neural networks, and random forests with the past price information and technical indicators as model features. The average classification accuracy of four algorithms are consistently all above the 50% threshold for all cryptocurrencies and for all the timescales showing that there exists predictability of trends in prices to a certain degree in the cryptocurrency markets. Machine learning classification algorithms reach about 55-65% predictive accuracy on average at the daily or minute level frequencies, while the support vector machines demonstrate the best and consistent results in terms of predictive accuracy compared to the logistic regression, artificial neural networks and random forest classification algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.