Pseudorandom number generators (PRNGs) generate random bit streams based on deterministic algorithms.Any bit stream generated with a PRNG will repeat itself at a certain point, and the bit streams will become correlated.As a result, all bit streams generated in this manner are statistically weak. Such weakness leads to a strong connection between PRNGs and chaos, which is characterized by ergodicity, confusion, complexity, sensitivity to initial conditions, and dependence on control parameters. In this study, we introduce a PRNG that generates bit sequences by sampling two Arnold cat map outputs. The statistical randomness of bit streams obtained using this PRNG was verified by statistical analyses such as the NIST test suite, the scale index method, statistical complexity measures, and autocorrelation. The generated bit streams successfully passed all the analytical tests and can be safely used for the many applications of randomness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.