The objective of this work was to determine the concentration of total phenols, total flavonoids, hydroxycinnamic acids, and proanthocyanidins present in crude extracts of Quercus laurina, Q. crassifolia, and Q. scytophylla bark. They were extracted by ethanol (90%) maceration and hot water. The antioxidant capacity was determined by the ability to capture OH•, O2•−, ROO•, H2O2, NO•, and HClO. The hot water crude extract of Q. crassifolia was chosen to be concentrated and purified due to its higher extraction yield (20.04%), concentration of phenol compounds (747 mg gallic acid equivalent (GAE)/g, 25.4 mg quercetin equivalent (QE)/g, 235 mg ChAE/g, 25.7 mg chlorogenic acid equivalents (ChAE)/g), and antioxidant capacity (expressed as half maximal effective concentration (EC50, µg/mL): OH• = 918, O2•− = 80.5, ROO• = 577, H2O2 = 597, NO• ≥ 4000, HClO = 740). In a second stage, Q. crassifolia extracted with hot water was treated with ethyl acetate, concentrating the phenol compounds (860 mg GAE/g, 43.6 mg QE/g, 362 ChAE/g, 9.4 cyanidin chloride equivalents (CChE)/g) and improving the scavenging capacity (OH• = 467, O2•− = 58.1, ROO• = 716, H2O2 = 22.0, NO• ≥ 4000, HClO = 108). Q. crassifolia had the highest polyphenolic concentration and the better capacity for scavenging reactive species, being a favorable candidate to be considered in the development of new products.
Oak wood is used in barrels for wine aging. During aging, polyphenols are transferred from the barrels to the liquid. Although the bioactivity of oak polyphenols in wines has been extensively studied, no investigation exists on their toxicological properties, which limits their use as functional safe ingredients for other products. In this work, the chemical composition of a polyphenolic extract of Quercus crassifolia bark (QCBe) was studied by GC‐MS. Its antibacterial properties on probiotic and pathogenic bacteria and its subacute‐oral toxicity were determined as a way to understand the potential impact from its addition to fermented food as a functional ingredient. QCBe shows a selective inhibition of Escherichia coli compared with Lactobacillus bulgaricus and Streptococcus thermophylus. According to the toxicity evaluation, the subacute no‐observed‐adverse‐effect‐level was achieved at 11 mg/kg bw/day, whereas the subacute lowest‐observed‐adverse‐effect‐level for kidney damage was at 33 mg/kg bw/day. These results suggest that, given the fact an adverse effect was observed after subacute administration of this extract, further longer term toxicological studies are needed to provide sufficient safety evidence for its use in humans. Practical Application Mexico's yogurt market is growing which creates opportunities for the development of some yogurt products as functional foods. As a first step to evaluate its potential use in yogurt formulation, the antibacterial effect of a Quercus crassifolia polyphenolic extract (QCBe) on probiotic bacteria and its subacute‐oral toxicity in rats were studied. A low inhibition on probiotic bacteria growth was observed after QCBe addition to Lactobacillus bulgaricus and Streptococcus thermophylus cultures. Exposure to QCBe for a subacute duration resulted in renal injury in rats at dosages greater than or equal to 33 mg/kg/bw/day. This adverse effect indicates the importance of performing further long‐term toxicological assessments prior to the addition of QCBe to a food like yogurt, which is regularly eaten by consumers.
Introduction: A diet high in calories and saturated fats has been associated with health problems that have been increasing worldwide. Therefore, it is required to increase the number of formulated foods that generate well-being to health. Yogurt is a widely consumed food by all sectors of the population and it can be used as a vehicle to incorporate bioactive compounds. The phenolic compounds present in forest residues, such as those from oak bark, can be used and incorporated into yogurt, to increase its benefits as a functional food.Objective: The objective of this study was to develop a multifunctional yogurt enriched with vegetable oil (2.3% w/w) as a source of omega 6 and 3 and adding nanocapsules (24.5% w/w) of an extract of oak bark from Quercus crassifolia, rich in in phenolic compounds and high antioxidant capacity.Methods: Three yogurt formulations were prepared: F1: yogurt was made with non-fat milk, used as a control, F2: yogurt was prepared with non-fat milk and added with vegetable palm oil, and F3: non-fat yogurt was added with vegetable oil and nanoencapsulated oak bark phenolic extract. The yogurts were characterized in their chemical composition, microbiological analysis, and sensory analysis. Results: The multifunctional product F3 and product F2 presented lactic acid bacteria in concentration of 3.01X106 and 4.73x106, respectively, preserving characteristics of probiotic food. Product F3 presented low levels of syneresis (7.34%) and it was significantly different from the control yogurt (9.01%). The viscosity increased from 150 cP in the control yogurt to 341 cP in F3, due to the increase in the concentrations of solids by nanoencapsulating the phenolic. The wall material used for nanoencapsulation was sodium caseinate and mantodextrin. However, this increase in viscosity did not affect the sensory evaluation of the product. There were no significant differences between the control yogurt and the F2 and F3 products.Conclusion: A yogurt added with vegetable oil and nanoencapsulated oak bark phenolic extract was obtained. It was enhanced by the presence of probiotics, bioactive compounds, and essential fatty acids, and then evaluated and accepted by a sensory panel. Nanoencapsulation is a viable alternative to mask the characteristic astringent taste of phenolic compounds because it was not detected by the panelists. Keywords: waste recovery; functional dairy foods; essential fatty acids; probiotics; antioxidants; sensory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.