UV-induced pigmentation (suntanning) requires induction of alpha-melanocyte-stimulating hormone (alpha-MSH) secretion by keratinocytes. alpha-MSH and other bioactive peptides are cleavage products of pro-opiomelanocortin (POMC). Here we provide biochemical and genetic evidence demonstrating that UV induction of POMC/MSH in skin is directly controlled by p53. Whereas p53 potently stimulates the POMC promoter in response to UV, the absence of p53, as in knockout mice, is associated with absence of the UV-tanning response. The same pathway produces beta-endorphin, another POMC derivative, which potentially contributes to sun-seeking behaviors. Furthermore, several instances of UV-independent pathologic pigmentation are shown to involve p53 "mimicking" the tanning response. p53 thus functions as a sensor/effector for UV pigmentation, which is a nearly constant environmental exposure. Moreover, this pathway is activated in numerous conditions of pathologic pigmentation and thus mimics the tanning response.
Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyterestricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a smallmolecule strategy for suppression of the MITF oncogene in vivo.cancer | pigmentation | signal transduction
The Drosophila pair-rule gene odz (Tenm) has many patterning roles throughout development. We have identified four mammalian homologs of this gene, including one previously described as a mouse ER stress response gene, Doc4 (Wang et al., 1998). The Odz genes encode large polypeptides displaying the hallmarks of Drosophila Odz: a putative signal peptide; eight EGF-like repeats; and a putative transmembrane domain followed by a 1800-amino-acid stretch without homology to any proteins outside of this family. The mouse genes Odz3 and Doc4/Odz4 exhibit partially overlapping, but clearly distinct, embryonic expression patterns. The major embryonic sites of expression are in the nervous system, including the tectum, optic recess, optic stalk, and developing eye. Additional sites of expression include trachea and mesodermally derived tissues, such as mesentery, and forming limb and bone. Expression of the Odz2 gene is restricted to the nervous system. The expression patterns suggest that each of the genes has its own distinct developmental role. Comparisons of Drosophila and vertebrate Odz expression patterns suggest evolutionarily conserved functions.
SummaryMelanoma incidence continues to rise at an alarming rate while effective systemic therapies remain very limited. Microphthalmia-associated transcription factor (MITF) is required for development of melanocytes and is an amplified oncogene in a fraction of human melanomas. MITF also plays an oncogenic role in human clear cell sarcomas, which typically exhibit melanoma-like features. Although pharmacologic suppression of MITF is of potential interest in a variety of clinical settings, it is not known to contain intrinsic catalytic activity capable of direct small molecule inhibition. An alternative drug-targeting strategy is to identify and interfere with lineage-restricted mechanisms required for its expression. Here, we report that multiple HDACinhibitor drugs potently suppress MITF expression in melanocytes, melanoma and clear cell sarcoma cells. Although HDAC inhibitors may affect numerous cellular targets, we observed suppression of skin pigmentation by topical drug application as well as evidence of anti-melanoma efficacy in vitro and in mouse xenografts. Consequently, HDAC inhibitor drugs are candidates to play therapeutic roles in targeting conditions affecting the melanocyte lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.