In Alzheimer's disease, both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) colocalize with brain fibrils of amyloid- (A) peptides, and synaptic AChE-S facilitates fibril formation by association with insoluble A fibrils. Here, we report that human BChE and BSP41, a synthetic peptide derived from the BChE C terminus, inversely associate with the soluble A conformers and delay the onset and decrease the rate of A fibril formation in vitro, at a 1:100 BChE͞A molar ratio and in a dose-dependent manner. The corresponding AChE synthetic peptide (ASP)40 peptide, derived from the homologous C terminus of synaptic human (h)AChE-S, failed to significantly affect A fibril formation, attributing the role of enhancing this process to an AChE domain other than the C terminus. Circular dichroism and molecular modeling confirmed that both ASP40 and BChE synthetic peptide (BSP)41 are amphipathic ␣-helices. However, ASP40 shows symmetric amphipathicity, whereas BSP41 presented an aromatic tryptophan residue in the polar side of the C terminus. That this aromatic residue is causally involved in the attenuating effect of BChE was further supported by mutagenesis experiments in which (W8R) BSP41 showed suppressed capacity to attenuate fibril formation. In Alzheimer's disease, BChE may have thus acquired an inverse role to that of AChE by adopting imperfect amphipathic characteristics of its C terminus.
Long-lasting alternative splicing of neuronal acetylcholinesterase (AChE) pre-mRNA occurs during neuronal development and following stress, altering synaptic properties. To explore the corresponding molecular events, we sought to identify mRNAs encoding for abundant splicing factors in the prefrontal cortex (PFC) following stress. Here we show elevated levels of the splicing factor SC35 in stressed as compared with naïve mice. In cotransfections of COS-1 and HEK293 cells with an AChE minigene allowing 3 0 splice variations, SC35 facilitated a shift from the primary AChE-S to the stress-induced AChE-R variant, while ASF/SF2 caused the opposite effect. Transfection with chimeric constructs comprising of SC35 and ASF/SF2 RRM/RS domains identified the SC35 RRM as responsible for AChE mRNA's alternative splicing. In poststress PFC neurons, increased SC35 mRNA and protein levels coincided with selective increase in AChE-R mRNA. In the developing mouse embryo, cortical progenitor cells in the ventricular zone displayed transient SC35 elevation concomitant with dominance of AChE-R over AChE-S mRNA. Finally, transgenic mice overexpressing human AChE-R, but not those overexpressing AChE-S, showed significant elevation in neuronal SC35 levels, suggesting a reciprocal reinforcement process. Together, these findings point to an interactive relationship of SC35 with cholinergic signals in the long-lasting consequences of stress on nervous system plasticity and development. Molecular Psychiatry (2005) 10, 985-997.
The K variant of butyrylcholinesterase (BChE-K, 20% incidence) is a long debated risk factor for Alzheimer disease (AD). The A539T substitution in BChE-K is located at the C terminus, which is essential both for BChE tetramerization and for its capacity to attenuate β-amyloid (Aβ) fibril formation. Here, we report that BChE-K is inherently unstable as compared with the “usual” BChE (BChE-U), resulting in reduced hydrolytic activity and predicting prolonged acetylcholine maintenance and protection from AD. A synthetic peptide derived from the C terminus of BChE-K (BSP-K), which displayed impaired intermolecular interactions, was less potent in suppressing Aβ oligomerization than its BSP-U counterpart. Correspondingly, highly purified recombinant human rBChE-U monomers suppressed β-amyloid fibril formation less effectively than dimers, which also protected cultured neuroblastoma cells from Aβ neurotoxicity. Dual activity structurally derived changes due to the A539T substitution can thus account for both neuroprotective characteristics caused by sustained acetylcholine levels and elevated AD risk due to inefficient interference with amyloidogenic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.