Telomerase is a cellular reverse transcriptase, which utilizes an integral RNA template to extend single-stranded telomeric DNA. We used site-specific photocrosslinking to map interactions between DNA primers and the catalytic protein subunit (tTERT) of Tetrahymena thermophila telomerase in functional enzyme complexes. Our assays reveal contact of the single-stranded DNA adjacent to the primer-template hybrid and tTERT residue W187 at the periphery of the N-terminal domain. This contact was detected in complexes with three different registers of template in the active site, suggesting that it is maintained throughout synthesis of a complete telomeric repeat. Substitution of nearby residue Q168, but not W187, alters the K m for primer elongation, implying that it plays a role in the DNA recognition. These findings are the first to directly demonstrate the physical location of TERT-DNA contacts in catalytically active telomerase and to identify amino acid determinants of DNA binding affinity. Our data also suggest a movement of the TERT active site relative to the templateadjacent single-stranded DNA binding site within a cycle of repeat synthesis.specific cleavage of proteins ͉ telomerase-primer interaction ͉ UV crosslinking T elomerase is a unique reverse transcriptase (RT) that extends the single-stranded 3Ј overhangs of telomeres by copying a template within the integral RNA component of the enzyme (1). Some telomerase enzymes can also use this internal template to direct the synthesis of telomeres at nontelomeric sites of chromosome fragmentation (2). In addition to the telomerase RNA subunit (TER), the enzyme contains a catalytic protein subunit, designated telomerase RT (TERT), and accessory proteins (3, 4).Telomerase was first discovered in extracts of the ciliate Tetrahymena thermophila (5), and telomerase from this organism remains an excellent model system for studies of enzyme structure and function. Its RNA subunit (tTER) of 159 nt contains the repeat-complementary sequence 3Ј-AACCCCAAC-5Ј and other motifs required for ribonucleoprotein (RNP) assembly and activity (1, 3). T. thermophila TERT (tTERT) consists of 1,117 amino acids, including a region between residues 518 and 881 that is conserved among RTs and designated as the RT domain (6). The N-terminal half of TERT contains motifs conserved among TERTs but not viral RTs. It constitutes two independently folded domains: the TERT essential N-terminal domain (TEN) and the TERT high-affinity TER binding domain (TRBD). In tTERT, residues 1-195 can be considered to constitute the TEN domain, whereas residues 196-528 comprise the TRBD (7-9).Telomerase specificity of interaction with single-stranded DNA has been studied by monitoring the elongation of primers of varying lengths, sequences and concentrations. Differences in the primer concentration-dependence and repeat addition processivity of product synthesis indirectly suggest that extensive contacts to the enzyme are made by primer regions 5Ј of the template hybrid (2). More direct physical assays have...
Dysregulated activity of A Disintegrin And Metalloproteinase 17 (ADAM17)/TNFα Converting Enzyme (TACE) is associated with inflammatory disorders and cancer progression by releasing regulatory membrane-tethered proteins like TNFα, IL6R and EGFR ligands. Although specific inhibition of TACE is thought to be a viable strategy for inflammatory disorders and for malignancies treatment, the generation of effective inhibitors in vivo has been proven to be challenging. Here we report on the development of a protein inhibitor that leverages the endogenous modulator of TACE. We have generated a stable form of the auto-inhibitory TACE prodomain (TPD), which specifically inhibits in vitro and cell-surface TACE, but not the related ADAM10, and effectively modulated TNFα secretion in cells. TPD significantly attenuated TACE-mediated disease models of sepsis, rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), and reduced TNFα in synovial fluids from RA patients. Our results demonstrate that intervening with endogenous ADAM sheddase modulatory mechanisms holds potential as a general strategy for the design of ADAM inhibitors.
Developmental neuronal cell death and axonal elimination are controlled by transcriptional programs, of which their nature and the function of their components remain elusive. Here, we identified the dual specificity phosphatase Dusp16 as part of trophic deprivation-induced transcriptome in sensory neurons. Ablation of Dusp16 enhanced axonal degeneration in response to trophic withdrawal, suggesting that it has a protective function. Moreover, axonal skin innervation was severely reduced while neuronal elimination was increased in the Dusp16 knockout. Mechanistically, Dusp16 negatively regulates the transcription factor p53 and antagonizes the expression of the pro-degenerative factor, Puma (p53 upregulated modulator of apoptosis). Co-ablation of Puma with Dusp16 protected axons from rapid degeneration and specifically reversed axonal innervation loss early in development with no effect on neuronal deficits. Overall, these results reveal that physiological axonal elimination is regulated by a transcriptional program that integrates regressive and progressive elements and identify Dusp16 as a new axonal preserving factor.
During embryonic development, axons can gain and lose sensitivity to guidance cues, and this flexibility is essential for the correct wiring of the nervous system. Yet, the underlying molecular mechanisms are largely unknown. Here we show that receptor cleavage by ADAM (A Disintegrin And Metalloprotease) metalloproteases promotes murine sensory axons loss of responsiveness to the chemorepellant Sema3A. Genetic ablation of ADAM10 and ADAM17 disrupts the developmental downregulation of Neuropilin-1 (Nrp1), the receptor for Sema3A, in sensory axons. Moreover, this is correlated with gain of repulsive response to Sema3A. Overexpression of Nrp1 in neurons reverses axonal desensitization to Sema3A, but this is hampered in a mutant Nrp1 with high susceptibility to cleavage. Lastly, we detect guidance errors of proprioceptive axons in ADAM knockouts that are consistent with enhanced response to Sema3A. Our results provide the first evidence for involvement of ADAMs in regulating developmental switch in responsiveness to axonal guidance cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.