The VDAC (voltage-dependent anion channel) plays a central role in apoptosis, participating in the release of apoptogenic factors including cytochrome c. The mechanisms by which VDAC forms a protein-conducting channel for the passage of cytochrome c are not clear. The present study approaches this problem by addressing the oligomeric status of VDAC and its role in the induction of the permeability transition pore and cytochrome c release. Chemical cross-linking of isolated mitochondria or purified VDAC with five different reagents proved that VDAC exists as dimers, trimers or tetramers. Fluorescence resonance energy transfer between fluorescently labelled VDACs supports the concept of dynamic VDAC oligomerization. Mitochondrial cross-linking prevented both permeability transition pore opening and release of cytochrome c, yet had no effect on electron transport or Ca 2+ uptake. Bilayer-reconstituted purified cross-linked VDAC showed decreased conductance and voltage-independent channel activity. In the dithiobis(succinimidyl propionate)-cross-linked VDAC, these channel properties could be reverted to those of the native VDAC by cleavage of the cross-linking. Cross-linking of VDAC reconstituted into liposomes inhibited the release of the proteoliposome-encapsulated cytochrome c. Moreover, encapsulated, but not soluble cytochrome c induced oligomerization of liposome-reconstituted VDAC. Thus the results indicate that VDAC exists in a dynamic equilibrium between dimers and tetramers and suggest that oligomeric VDAC may be involved in mitochondriamediated apoptosis.
In many countries the public's main source of information about science and technology is the mass media. Unfortunately, in recent years traditional journalism has experienced a collapse, and science journalism has been a major casualty. One potential remedy is to encourage scientists to write for news media about science. On these general news platforms, scientists' stories would have to compete for attention with other news stories on hard (e.g. politics) and entertaining (e.g. celebrity news) topics written by professional writers. Do they stand a chance? This study aimed to quantitatively characterize audience interactions as an indicator of interest in science news stories authored by early career scientists (henceforth 'scientists') trained to function as science reporters, as compared to news items written by reporters and published in the same news outlets. To measure users' behavior, we collected data on the number of clicks, likes, comments and average time spent on page. The sample was composed of 150 science items written by 50 scientists trained to contribute popular science stories in the Davidson Institute of Science Education reporters' program and published on two major Israeli news websites-Mako and Ynet between July 2015 to January 2018. Each science item was paired with another item written by the website's organic reporter, and published on the same channel as the science story (e.g., tourism, health) and the same close time. Overall significant differences were not found in the public's engagement with the different items. Although, on one website there was a significant difference on two out of four engagement types, the second website did not have any difference, e.g., people did not click, like or comment more on items written by organic reporters than on the stories written by scientists. This creates an optimistic starting point for filling the science news void by scientists as science reporters. Rationale and literature review The public draws primarily on the news media in general and internet news sites in particular for information about science and technology [1-4]. Globally, digital media have supplanted traditional print and broadcast media, which has also affected science journalism [5,6]. Today
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.