Smoothed finite element method (SFEM) was introduced by application of the stabilized conforming nodal integration in the conventional finite element method. In this method, integration is performed on "smoothing domains" rather than elements. Smoothing domains are created based on cells, nodes or edges for two dimensional problems. Based on the smoothing domain creation method, different types of SFEM are developed that have different properties. It has been shown that these methods are insensitive to mesh distortion and are generally more computationally efficient than mesh-free and finite element methods for the same accuracy level. Because of their interesting features, they have been used to solve different problems. This paper investigates the performance of these methods in coupled hydro-mechanical (consolidation) analysis, by solution of some problems using a developed SFEM/FEM code. Biot's consolidation theory is reviewed, and after introduction of the idea and formulation of SFEMs, discretized form of equations is given. Requirements for creation of stable coupled hydro-mechanical models are discussed and based on them, two methods for creation of stable SFEM models are introduced. To investigate the effectiveness of the methods, a number of examples are solved and results are compared with the finite element and analytical ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.