Parallel database systems horizontally partition large amounts of structured data in order to provide parallel data processing capabilities for analytical workloads in sharednothing clusters. One major challenge when horizontally partitioning large amounts of data is to reduce the network costs for a given workload and a database schema. A common technique to reduce the network costs in parallel database systems is to co-partition tables on their join key in order to avoid expensive remote join operations. However, existing partitioning schemes are limited in that respect since only subsets of tables in complex schemata sharing the same join key can be co-partitioned unless tables are fully replicated.In this paper we present a novel partitioning scheme called predicate-based reference partition (or PREF for short) that allows to co-partition sets of tables based on given join predicates. Moreover, based on PREF, we present two automatic partitioning design algorithms to maximize data-locality. One algorithm only needs the schema and data whereas the other algorithm additionally takes the workload as input.In our experiments we show that our automated design algorithms can partition database schemata of different complexity and thus help to effectively reduce the runtime of queries under a given workload when compared to existing partitioning approaches.
Distributed transactions on high-overhead TCP/IP-based networks were conventionally considered to be prohibitively expensive and thus were avoided at all costs. To that end, the primary goal of almost any existing partitioning scheme is to minimize the number of cross-partition transactions. However, with the new generation of fast RDMA-enabled networks, this assumption is no longer valid. In fact, recent work has shown that distributed databases can scale even when the majority of transactions are cross-partition.In this paper, we first make the case that the new bottleneck which hinders truly scalable transaction processing in modern RDMA-enabled databases is data contention, and that optimizing for data contention leads to different partitioning layouts than optimizing for the number of distributed transactions. We then present Chiller, a new approach to data partitioning and transaction execution, which aims to minimize data contention for both local and distributed transactions. Finally, we evaluate Chiller using various workloads, and show that our partitioning and execution strategy outperforms traditional partitioning techniques which try to avoid distributed transactions, by up to a factor of 2.
Highly available database systems rely on data replication to tolerate machine failures. Both classes of existing replication algorithms, active-passive and active-active, were designed in a time when network was the dominant performance bottleneck. In essence, these techniques aim to minimize network communication between replicas at the cost of incurring more processing redundancy; a trade-off that suitably fitted the conventional wisdom of distributed database design. However, the emergence of next-generation networks with high throughput and low latency calls for revisiting these assumptions. In this paper, we first make the case that in modern RDMAenabled networks, the bottleneck has shifted to CPUs, and therefore the existing network-optimized replication techniques are no longer optimal. We present Active-Memory Replication, a new high availability scheme that efficiently leverages RDMA to completely eliminate the processing redundancy in replication. Using Active-Memory, all replicas dedicate their processing power to executing new transactions, as opposed to performing redundant computation. Active-Memory maintains high availability and correctness in the presence of failures through an efficient RDMA-based undologging scheme. Our evaluation against active-passive and activeactive schemes shows that Active-Memory is up to a factor of 2 faster than the second-best protocol on RDMA-based networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.