Multiomics profiling is a powerful tool to characterize the same samples with complementary features orchestrating the genome, epigenome, transcriptome, proteome, and metabolome. However, the lack of ground truth hampers the objective assessment of and subsequent choice from a plethora of measurement and computational methods aiming to integrate diverse and often enigmatically incomparable omics datasets. Here we establish and characterize the first suites of publicly available multiomics reference materials of matched DNA, RNA, proteins, and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters, providing built-in truth defined by family relationship and the central dogma. We demonstrate that the "ratio"-based omics profiling data, i.e., by scaling the absolute feature values of a study sample relative to those of a concurrently measured universal reference sample, were inherently much more reproducible and comparable across batches, labs, platforms, and omics types, thus empower the horizontal (within-omics) and vertical (cross-omics) data integration in multiomics studies. Our study identifies "absolute" feature quantitation as the root cause of irreproducibility in multiomics measurement and data integration, and urges a paradigm shift from "absolute" to "ratio"-based multiomics profiling with universal reference materials.
Multiomics profiling is a powerful tool to characterize the same samples with complementary features orchestrating the genome, epigenome, transcriptome, proteome, and metabolome. However, the lack of ground truth hampers the objective assessment of and subsequent choice from a plethora of measurement and computational methods aiming to integrate diverse and often enigmatically incomparable omics datasets. Here we establish and characterize the first suites of publicly available multiomics reference materials of matched DNA, RNA, proteins, and metabolites derived from immortalized cell lines from a family quartet of parents and monozygotic twin daughters, providing built-in truth defined by family relationship and the central dogma. We demonstrate that the "ratio"-based omics profiling data, i.e., by scaling the absolute feature values of a study sample relative to those of a concurrently measured universal reference sample, were inherently much more reproducible and comparable across batches, labs, platforms, and omics types, thus empower the horizontal (within-omics) and vertical (cross-omics) data integration in multiomics studies. Our study identifies "absolute" feature quantitation as the root cause of irreproducibility in multiomics measurement and data integration, and urges a paradigm shift from "absolute" to "ratio"-based multiomics profiling with universal reference materials.
RNA sequencing (RNAseq) technology has become increasingly important in precision medicine and clinical diagnostics and emerged as a powerful tool for identifying protein-coding genes, performing differential gene analysis, and inferring immune cell composition. Human peripheral blood samples are widely used for RNAseq, providing valuable insights into individual biomolecular information. Blood samples can be classified as whole blood (WB), plasma, serum, and remaining sediment samples, including plasma-free blood (PFB) and serum-free blood (SFB) samples. However, the feasibility of using PFB and SFB samples for transcriptome analysis remains unclear. In this study, we aimed to assess the viability of employing PFB or SFB samples as substitute RNA sources in transcriptomic analysis and performed a comparative analysis of WB, PFB, and SFB samples for different applications. Our results revealed that PFB samples exhibit greater similarity to WB samples in terms of protein-coding gene expression patterns, differential expression gene profiling, and immunological characterizations, suggesting that PFB can be a viable alternative for transcriptomic analysis. This contributes to the optimization of blood sample utilization and the advancement of precision medicine research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.