BackgroundLipocalin‐2 is a proinflammatory adipokine upregulated in obese humans and animals. A pathogenic role of lipocalin‐2 in hypertension has been suggested. Mice lacking lipocalin‐2 are protected from dietary obesity‐induced cardiovascular dysfunctions. Administration of lipocalin‐2 causes abnormal vasodilator responses in mice on a high‐fat diet (HFD).Methods and ResultsWild‐type and lipocalin‐2 knockout mice were fed with standard chow or HFD. Immunoassays were performed for evaluating the circulating and tissue contents of lipocalin‐2. The relaxation and contraction of arteries were studied using a wire myograph. Blood pressure was monitored with implantable radio telemetry. Dietary obesity promoted the accumulation of lipocalin‐2 protein in blood and arteries. Deficiency of this adipokine protected mice from dietary obesity‐induced elevation of blood pressure. Mass spectrometry analysis revealed that human and murine lipocalin‐2 were modified by polyamination. Polyaminated lipocalin‐2 was rapidly cleared from the circulation. Adipose tissue was a major site for lipocalin‐2 deamidation. The circulating levels and the arterial accumulation of deamidated lipocalin‐2 were significantly enhanced by treatment with linoleic acid (18:2n−6), which bound to lipocalin‐2 with high affinity and prevented its interactions with matrix metalloproteinase 9 (MMP9). Combined administration of linoleic acid with lipocalin‐2 caused vascular inflammation and endothelial dysfunction and raised the blood pressure of mice receiving standard chow. A human lipocalin‐2 mutant with cysteine 87 replaced by alanine (C87A) contained less polyamines and exhibited a reduced capacity to form heterodimeric complexes with MMP9. After treatment, C87A remained in the circulation for a prolonged period of time and evoked endothelial dysfunction in the absence of linoleic acid.ConclusionsPolyamination facilitates the clearance of lipocalin‐2, whereas the accumulation of deamidated lipocalin‐2 in arteries causes vascular inflammation, endothelial dysfunction, and hypertension.
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
BACKGROUND AND PURPOSELipocalin-2 is a pro-inflammatory adipokine up-regulated in obese human subjects and animal models. Its circulating levels are positively correlated with the unfavourable lipid profiles, elevated blood pressure and insulin resistance index. Augmented lipocalin-2 has been found in patients with cardiovascular abnormalities.The present study was designed to investigate the role of lipocalin-2 in regulating endothelial function and vascular reactivity. EXPERIMENTAL APPROACHWild-type and lipocalin-2 knockout (Lcn2-KO) mice were fed with either a standard chow or a high-fat diet. Blood pressures and endothelium-dependent relaxations/contractions were monitored at 2 week intervals. RESULTSSystolic blood pressure was elevated by high-fat diet in wild-type mice but not in Lcn2-KO mice. Endothelial dysfunction, reflected by the impaired endothelium-dependent relaxations to insulin and augmented endothelium-dependent contractions to ACh, was induced by high-fat diet in wild-type mice. In contrast, Lcn2-KO mice were largely protected from the deterioration of endothelial function caused by dietary challenges. The eNOS dimer/monomer ratio, NO bioavailability, basal and insulinstimulated PKB/eNOS phosphorylation responses were higher in aortae of Lcn2-KO mice. Administration of lipocalin-2 attenuated endothelium-dependent relaxations to insulin and promoted endothelium-dependent contractions to ACh. It induced eNOS uncoupling and elevated COX expression in the arteries. Treatment with sulphaphenazole, a selective inhibitor of cytochrome P450 2C9, improved endothelial function in wild-type mice and blocked the effects of lipocalin-2 on both endothelium-dependent relaxations to insulin and endothelium-dependent contractions to ACh, as well as eNOS uncoupling. CONCLUSIONSLipocalin-2, by modulating cytochrome P450 2C9 activity, is critically involved in diet-induced endothelial dysfunction. AbbreviationsADRF, adipocyte-derived relaxing factors; EDCF, endothelium-derived contracting factor; EDRF, endothelium-derived relaxing factor; Lcn2-KO, lipocalin-2 knockout; L-NAME, N w -nitro-L-arginine methyl ester; NADPH oxidase, nicotinamide adenine dinucleotide phosphate oxidase; SPZ, sulphaphenazole; TP, thromboxane prostanoid BJP British Journal of Pharmacology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.