Radiotherapy is the mainstay and primary curative treatment modality in nasopharyngeal carcinoma (NPC), whose efficacy is limited by the development of intrinsic and acquired radioresistance. Thus, deciphering new molecular targets and pathways is essential for enhancing the radiosensitivity of NPC. SALL4 is a vital factor in the development and prognosis of various cancers, but its role in radioresistance remains elusive. This study aimed to explore the association of SALL4 expression with radioresistance of NPC. It was revealed that SALL4 expression was closely correlated with advanced T classification of NPC patients. Inhibition of SALL4 reduced proliferation and sensitized cells to radiation both in vitro and in vivo. Furthermore, SALL4 silencing increased radiation‐induced DNA damage, apoptosis, and G2/M arrest in CNE2 and CNE2R cells. Moreover, knockdown of SALL4 impaired the expression of p‐ATM, p‐Chk2, p‐p53, and anti‐apoptosis protein Bcl‐2, while pro‐apoptosis protein was upregulated. These findings indicate that SALL4 could induce radioresistance via ATM/Chk2/p53 pathway and its downstream proteins related to apoptosis. Targeting SALL4 might be a promising approach for the development of novel radiosensitizing therapeutic agents for radioresistant NPC patients.
Radiotherapy with or without concurrent chemotherapy is the standard treatment for nasopharyngeal carcinoma (NPC) patients, whose efficacy is limited partly by intrinsic and acquired radioresistance. DNA methyltransferase 3B (DNMT3B) has been reported to participate in tumorigenesis via DNA methylation, but its role in mediating progression and radioresistance of NPC remains unclear. Therefore, we conducted the following studies to explore the relationship between DNMT3B and NPC. Here, we found that DNMT3B was elevated in NPC tissues and predicted the poor prognosis of NPC patients. We demonstrated for the first time that ionizing radiation could induce DNMT3B, which might be one of the reasons for radioresistance. Silencing of DNMT3B inhibited migration and invasion via suppressing epithelialmesenchymal transition (EMT) in NPC cells. Furthermore, silencing DNMT3B restored and activated p53 and p21 via DNA demethylation, which led to cell cycle arrest and apoptosis, resulting in increased radiosensitivity of NPC both in vitro and in vivo. DNMT3B functions as a novel oncogene in the radioresistance of NPC through regulating EMT, cell cycle, and apoptosis. Therefore, DNMT3B could be a potential target for NPC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.