For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.
Many technological properties of glasses are intrinsically related to their chemical compositions and many studies have previously reported significant variations in mechanical and physical properties of glasses due to compositional modifications. For example, studies are available which link the indentation cracking behavior of glasses to Poisson's ratio,
Reproducible preparation of lithium tetraborate fused beads for XRF analysis of glass and mineral samples is of paramount importance for analytical repeatability. However, as with all glass melting processes, losses due to volatilisation must be taken into account and their effects are not negligible. Here the effects of fused bead melting time have been studied for four Certified Reference Materials (CRM’s: three feldspars, one silicate glass), in terms of their effects on analytical variability and volatilisation losses arising from fused bead preparation. At melting temperatures of 1065 °C, and for feldspar samples, fused bead melting times shorter than approximately 25 min generally gave rise to a greater deviation of the XRF-analysed composition from the certified composition. This variation might be due to incomplete fusion and/or fused bead inhomogeneity but further research is needed. In contrast, the shortest fused bead melting time for the silicate glass CRM gave an XRF-analysed composition closer to the certified values than longer melting times. This may suggest a faster rate of glass-in-glass dissolution and homogenization during fused bead preparation. For all samples, longer melting times gave rise to greater volatilisation losses (including sulphates and halides) during fusion. This was demonstrated by a linear relationship between SO3 mass loss and time1/2, as predicted by a simple diffusion-based model. Iodine volatilisation displays a more complex relationship, suggestive of diffusion plus additional mechanisms. This conclusion may have implications for vitrification of iodine-bearing radioactive wastes. Our research demonstrates that the nature of the sample material impacts on the most appropriate fusion times. For feldspars no less than ~25 min and no more than ~60 min of fusion at 1065 °C, using Li2B4O7 as the fusion medium and in the context of feldspar samples and the automatic fusion equipment used here, strikes an acceptable (albeit non-ideal) balance between the competing factors of fused bead quality, analytical consistency and mitigating volatilisation losses. Conversely, for the silicate glass sample, shorter fusion times of less than ~30 min under the same conditions provided more accurate analyses whilst limiting volatile losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.