Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver assistance systems and autonomous driving functions have many advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns related to safety still exist. For instance, failures related to sensors or algorithms being used can lead to critical problems. Therefore, controller algorithms should be more robust and welloptimized in order to eliminate these safety issues. This requires the implementation of automated optimization algorithms for the controller parameter tuning process. The main objective of this study is to optimize the designed controller for an adaptive cruise control system by using the particle swarm optimization method, which is a swarm intelligence optimization technique. Based on the results, it is observed that the use of automated optimization techniques for adaptive cruise control systems leads to better accuracy and safety for driving control. Furthermore, the time consumed for the controller parameter tuning process is also decreased significantly. In conclusion, the adaptive cruise control system requirements can be easily and accurately ensured by the use of particle swarm optimization algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.