Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention.
Tandem pore domain acid-sensitive K ؉ channel 3 (TASK-3) is a new member of the tandem pore domain potassium channel family. A cDNA encoding a 365-amino acid polypeptide with four putative transmembrane segments and two pore regions was isolated from guinea pig brain. An orthologous sequence was cloned from a human genomic library. Although TASK-3 is 62% identical to TASK-1, the cytosolic C-terminal sequence is only weakly conserved. Analysis of the gene structure identified an intron within the conserved GYG motif of the first pore region. Reverse transcriptase-polymerase chain reaction analysis showed strong expression in brain but very weak mRNA levels in other tissues. Cellattached patch-clamp recordings of TASK-3 expressed in HEK293 cells showed that the single channel currentvoltage relation was inwardly rectifying, and open probability increased markedly with depolarization. Removal of external divalent cations increased the mean single channel current measured at ؊100 mV from ؊2.3 to ؊5.8 pA. Expression of TASK-3 in Xenopus oocytes revealed an outwardly rectifying K ؉ current that was strongly decreased in the presence of lower extracellular pH. Substitution of the histidine residue His-98 by asparagine or tyrosine abolished pH sensitivity. This histidine, which is located at the outer part of the pore adjacent to the selectivity filter, may be an essential component of the extracellular pH sensor.
TRESK (TWIK-related spinal cord K + channel) is the most recently identified member of the two-pore-domain potassium channel (K 2P ) family, the molecular source of background potassium currents. Human TRESK channels are not affected by external acidification. However, the mouse orthologue displays moderate pH dependence isolated to a single histidine residue adjacent to the GYG selectivity filter. In the human protein, sequence substitution of tyrosine by histidine at this critical position generated a mutant that displays almost identical proton sensitivity compared with mouse TRESK. In contrast to human TRESK, which is specifically located in spinal cord, we detected mouse TRESK (mTRESK) mRNA in several epithelial and neuronal tissues including lung, liver, kidney, brain and spinal cord. As revealed by endpoint and quantitative RT-PCR, mTRESK channels are mainly expressed in dorsal root ganglia (DRG) and on the transcript level represent the most important background potassium channel in this tissue. DRG neurones of all sizes were labelled by in situ hybridizations with TRESK-specific probes. In DRG neurones of TRESK[G339R] functional knock-out (KO) mice the standing outward current IK so was significantly reduced compared with TRESK wild-type (WT) littermates. Different responses to K 2P channel regulators such as bupivacaine, extracellular protons and quinidine corroborated the finding that approximately 20% of IK so is carried by TRESK channels. Unexpectedly, we found no difference in resting membrane potential between DRG neurones of TRESK[WT] and TRESK[G339R] functional KO mice. However, in current-clamp recordings we observed significant changes in action potential duration and amplitude of after-hyperpolarization. Most strikingly, cellular excitability of DRG neurones from functional KO mice was significantly augmented as revealed by reduced rheobase current to elicit action potentials. Background (leak) potassium currents substantially contribute to the resting membrane potential of several excitable and non-excitable cells. This K + conductance plays an important role in setting the cellular excitability and regulates the firing rate of neurones. Two-poredomain potassium (K 2P ) channels, when expressed in heterologous systems, show constitutive activity throughout the physiological range of membrane potential and thus are classified as background K + channels. Functional K 2P channels consist of two subunits, each of which has two pore domains and four transmembrane segments. In mammals 15 different K 2P channel subunits (KCNK) have been identified and, due to structural and functional characteristics, they are divided into several subfamilies, e.g. acid-sensitive TASK channels and lipid-sensitive mechano-gated TREK/TRAAK channels (reviewed by Goldstein et al. 2001;Bayliss et al. 2003; Honoré, 2007). The activity of K 2P channels is regulated by various physical and chemical stimuli such as temperature , membrane stress (Maingret et al. 1999), protons (Duprat et al. 1997Rajan et al. 2000), free fat...
Two cDNAs encoding novel K؉ channels, THIK-1 and THIK-2 (tandem pore domain halothane inhibited K ؉ channel), were isolated from rat brain. The proteins of 405 and 430 amino acids were 58% identical to each other. Homology analysis showed that the novel channels form a separate subfamily among tandem pore domain K ؉ channels. The genes of the human orthologs were identified as human genomic data base entries. They possess one intron each and were assigned to chromosomal region 14q24.1-14q24.3 (human (h) THIK-1) and 2p22-2p21 (hTHIK-2). In rat (r), THIK-1 (rTHIK-1) is expressed ubiquitously; rTHIK-2 expression was found in several tissues including brain and kidney. In situ hybridization of brain slices showed that rTHIK-2 is strongly expressed in most brain regions, whereas rTHIK-1 expression is more restricted. Heterologous expression of rTHIK-1 in Xenopus oocytes revealed a K ؉ channel displaying weak inward rectification in symmetrical K ؉ solution. The current was enhanced by arachidonic acid and inhibited by halothane. rTHIK-2 did not functionally express. Confocal microscopy of oocytes injected with green fluorescent protein-tagged rTHIK-1 or rTHIK-2 showed that both channel subunits are targeted to the outer membrane. However, coinjection of rTHIK-2 did not affect the currents induced by rTHIK-1, indicating that the two channel subunits do not form heteromers.
The two-pore-domain potassium channels TASK-1, TASK-3 and TASK-5 possess a conserved C-terminal motif of five amino acids. Truncation of the C-terminus of TASK-1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP-tagged channel proteins. Two-hybrid analysis showed that the C-terminal domain of TASK-1, TASK-3 and TASK-5, but not TASK-4, interacts with isoforms of the adapter protein 14-3-3. A pentapeptide motif at the extreme C-terminus of TASK-1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14-3-3, whereas the last 40 amino acids of TASK-1 were required for strong binding. Deletion of a single amino acid at the C-terminal end of TASK-1 or TASK-3 abolished binding of 14-3-3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK-1 mutants that failed to interact with 14-3-3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK-1 S409A, which interacts with 14-3-3-like wild-type channels, displayed normal macroscopic currents. Co-injection of 14-3-3z cRNA increased TASK-1 current in Xenopus oocytes by about 70 %. After co-transfection in HEK293 cells, TASK-1 and 14-3-3z (but not TASK-1DC5 and 14-3-3z) could be co-immunoprecipitated. Furthermore, TASK-1 and 14-3-3 could be coimmunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14-3-3 with TASK-1 or TASK-3 may promote the trafficking of the channels to the surface membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.