One solution to the lack of label problem is to exploit transfer learning, whereby one acquires knowledge from source-domains to improve the learning performance in the target-domain. The main challenge is that the source and target domains may have different distributions. An open problem is how to select the available models (including algorithms and parameters) and importantly, abundance of source-domain data, through statistically reliable methods, thus making transfer learning practical and easy-to-use for real-world applications. To address this challenge, one needs to take into account the difference in both marginal and conditional distributions in the same time, but not just one of them. In this paper, we formulate a new criterion to overcome "double" distribution shift and present a practical approach "Transfer Cross Validation" (TrCV) to select both models and data in a cross validation framework, optimized for transfer learning. The idea is to use density ratio weighting to overcome the difference in marginal distributions and propose a "reverse validation" procedure to quantify how well a model approximates the true conditional distribution of target-domain. The usefulness of TrCV is demonstrated on different cross-domain tasks, including wine quality evaluation, web-user ranking and text categorization. The experiment results show that the proposed method outperforms both traditional cross-validation and one state-of-the-art method which only considers marginal distribution shift. The software and datasets are available from the authors.
No abstract
Time-sync video tagging aims to automatically generate tags for each video shot. It can improve the user's experience in previewing a video's timeline structure compared to traditional schemes that tag an entire video clip. In this paper, we propose a new application which extracts time-sync video tags by automatically exploiting crowdsourced comments from video websites such as Nico Nico Douga, where videos are commented on by online crowd users in a time-sync manner. The challenge of the proposed application is that users with bias interact with one another frequently and bring noise into the data, while the comments are too sparse to compensate for the noise. Previous techniques are unable to handle this task well as they consider video semantics independently, which may overfit the sparse comments in each shot and thus fail to provide accurate modeling. To resolve these issues, we propose a novel temporal and personalized topic model that jointly considers temporal dependencies between video semantics, users' interaction in commenting, and users' preferences as prior knowledge. Our proposed model shares knowledge across video shots via users to enrich the short comments, and peels off user interaction and user bias to solve the noisy-comment problem. Log-likelihood analyses and user studies on large datasets show that the proposed model outperforms several state-of-the-art baselines in video tagging quality. Case studies also demonstrate our model's capability of extracting tags from the crowdsourced short and noisy comments.
When labeled examples are limited and difficult to obtain, transfer learning employs knowledge from a source domain to improve learning accuracy in the target domain. However, the assumption made by existing approaches, that the marginal and conditional probabilities are directly related between source and target domains, has limited applicability in either the original space or its linear transformations. To solve this problem, we propose an adaptive kernel approach that maps the marginal distribution of targetdomain and source-domain data into a common kernel space, and utilize a sample selection strategy to draw conditional probabilities between the two domains closer. We formally show that under the kernel-mapping space, the difference in distributions between the two domains is bounded; and the prediction error of the proposed approach can also be bounded. Experimental results demonstrate that the proposed method outperforms both traditional inductive classifiers and the state-of-the-art boosting-based transfer algorithms on most domains, including text categorization and web page ratings. In particular, it can achieve around 10% higher accuracy than other approaches for the text categorization problem. The source code and datasets are available from the authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.