This paper reports a rational design of temperature-responsive nanofiber meshes with shape-memory effect. The meshes were fabricated by electrospinning a poly(ε-caprolactone) (PCL)-based polyurethane with different contents of soft and hard segments. The effects of PCL diol/hexamethylene diisocyanate (HDI)/1,4-butanediol (BD) molar ratio in terms of the contents of soft and hard segments on the shape-memory properties were investigated. Although the mechanical property improved with increasing hard segment ratio, optimal shape-memory properties were obtained with a PCL/HDI/BD molar ratio of 1:4:3. At a microscopic level, the original nanofibrous structure was easily deformed into a temporary shape, and recovered its original structure when the sample was reheated. A higher recovery rate (>89%) was achieved even when the mesh was deformed up to 400%. Finally, the nanofiber meshes were used to control the alignment of human mesenchymal stem cells (hMSCs). The hMSCs aligned well along the fiber orientation. The proposed nanofibrous meshes with the shape-memory effect have the potential to serve as in vitro platforms for the investigation of cell functions as well as implantable scaffolds for wound-healing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.