The multiobjective simulation optimization (MOSO) problem is a nonlinear multiobjective optimization problem in which multiple simultaneous and conflicting objective functions can only be observed with stochastic error. We provide an introduction to MOSO at the advanced tutorial level, aimed at researchers and practitioners who wish to begin working in this emerging area. Our focus is exclusively on MOSO methods that characterize the entire efficient or Pareto-optimal set as the solution to the MOSO problem; later, this set may be used as input to the broader multicriteria decision-making process. Our introduction to MOSO includes an overview of existing theory, methods, and provably convergent algorithms that explicitly control sampling error for (1) MOSO on finite sets, called multiobjective ranking and selection; (2) MOSO with integer-ordered decision variables; and (3) MOSO with continuous decision variables. In the context of integer-ordered and continuous decision variables, we focus on methods that provably converge to a local efficient set under the natural ordering. We also discuss key open questions that remain in this emerging field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.