The Rab class of low molecular weight GTPases has been implicated in the regulation of vesicular trafficking between membrane compartments in eukaryotic cells. The Rab3 family consisting of four highly homologous isoforms is associated with secretory granules and synaptic vesicles. Many different types of experiments indicate that Rab3a is a negative regulator of exocytosis and that its GTP-bound form interacts with Rabphilin3, a possible effector. Overexpression of Rabphilin3 in chromaffin cells enhances secretion. We have investigated the expression, localization, and effects on secretion of the various members of the Rab3 family in bovine chromaffin and PC12 cells. We found that Rab3a, Rab3b, Rab3c, and Rab3d are expressed to varying degrees in PC12 cells and in a fraction enriched in chromaffin granule membranes from the adrenal medulla. Immunocytochemistry revealed that all members of the family when overexpressed in PC12 cells localize to secretory granules. Binding constants for the interaction of the GTP-bound forms of Rab3a, Rab3b, Rab3c, and Rab3d with Rabphilin3 were comparable (K d ؍ 10 -20 nM). Overexpression of each of the four members of the Rab3 family inhibited secretion. Mutations in Rab3a were identified that strongly impaired the ability of the GTPbound form to interact with Rabphilin3. The mutated proteins inhibited secretion similarly to wild type Rab3a. Although Rab3a and Rabphilin3 are located on the same secretory granule or secretory vesicle and interact both in vitro and in situ, it is concluded that the inhibition of secretion by overexpression of Rab3a is unrelated to its ability to interact with Rabphilin3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.