Purpose:The development of computer-aided diagnostic ͑CAD͒ methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography ͑CT͒ scans. The Lung Image Database Consortium ͑LIDC͒ and Image Database Resource Initiative ͑IDRI͒ completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute ͑NCI͒, further advanced by the Foundation for the National Institutes of Health ͑FNIH͒, and accompanied by the Food and Drug Administration ͑FDA͒ through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ͑"noduleՆ 3 mm," "noduleϽ 3 mm," and "non-noduleՆ 3 mm"͒. In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results:The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "noduleՆ 3 mm" by at least one radiologist, of which 928 ͑34.7%͒ received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions:The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Face perception requires representation of invariant aspects that underlie identity recognition as well as representation of changeable aspects, such as eye gaze and expression, that facilitate social communication. Using functional magnetic resonance imaging (fMRI), we investigated the perception of face identity and eye gaze in the human brain. Perception of face identity was mediated more by regions in the inferior occipital and fusiform gyri, and perception of eye gaze was mediated more by regions in the superior temporal sulci. Eye-gaze perception also seemed to recruit the spatial cognition system in the intraparietal sulcus to encode the direction of another's gaze and to focus attention in that direction.
Segmentation of pulmonary X-ray computed tomography (CT) images is a precursor to most pulmonary image analysis applications. This paper presents a fully automatic method for identifying the lungs in three-dimensional (3-D) pulmonary X-ray CT images. The method has three main steps. First, the lung region is extracted from the CT images by gray-level thresholding. Then, the left and right lungs are separated by identifying the anterior and posterior junctions by dynamic programming. Finally, a sequence of morphological operations is used to smooth the irregular boundary along the mediastinum in order to obtain results consistent with those obtained by manual analysis, in which only the most central pulmonary arteries are excluded from the lung region. The method has been tested by processing 3-D CT data sets from eight normal subjects, each imaged three times at biweekly intervals with lungs at 90% vital capacity. We present results by comparing our automatic method to manually traced borders from two image analysts. Averaged over all volumes, the root mean square difference between the computer and human analysis is 0.8 pixels (0.54 mm). The mean intrasubject change in tissue content over the three scans was 2.75% +/- 2.29% (mean +/- standard deviation).
BACKGROUND Currently, the diagnosis of chronic obstructive pulmonary disease (COPD) requires a ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) of less than 0.70 as assessed by spirometry after bronchodilator use. However, many smokers who do not meet this definition have respiratory symptoms. METHODS We conducted an observational study involving 2736 current or former smokers and controls who had never smoked and measured their respiratory symptoms using the COPD Assessment Test (CAT; scores range from 0 to 40, with higher scores indicating greater severity of symptoms). We examined whether current or former smokers who had preserved pulmonary function as assessed by spirometry (FEV1:FVC ≥0.70 and an FVC above the lower limit of the normal range after bronchodilator use) and had symptoms (CAT score, ≥10) had a higher risk of respiratory exacerbations than current or former smokers with preserved pulmonary function who were asymptomatic (CAT score, <10) and whether those with symptoms had different findings from the asymptomatic group with respect to the 6-minute walk distance, lung function, or high-resolution computed tomographic (HRCT) scan of the chest. RESULTS Respiratory symptoms were present in 50% of current or former smokers with preserved pulmonary function. The mean (±SD) rate of respiratory exacerbations among symptomatic current or former smokers was significantly higher than the rates among asymptomatic current or former smokers and among controls who never smoked (0.27± 0.67 vs. 0.08±0.31 and 0.03±0.21 events, respectively, per year; P<0.001 for both comparisons). Symptomatic current or former smokers, regardless of history of asthma, also had greater limitation of activity, slightly lower FEV1, FVC, and inspiratory capacity, and greater airway-wall thickening without emphysema according to HRCT than did asymptomatic current or former smokers. Among symptomatic current or former smokers, 42% used bronchodilators and 23% used inhaled glucocorticoids. CONCLUSIONS Although they do not meet the current criteria for COPD, symptomatic current or former smokers with preserved pulmonary function have exacerbations, activity limitation, and evidence of airway disease. They currently use a range of respiratory medications without any evidence base. (Funded by the National Heart, Lung, and Blood Institute and the Foundation for the National Institutes of Health; SPIROMICS ClinicalTrials.gov number, NCT01969344.)
The geometry and caliber of the upper airway in apneic patients differs from those in normal subjects. The apneic airway is smaller and is narrowed laterally. Examination of the soft tissue structures surrounding the upper airway can lead to an understanding of these apneic airway dimensional changes. Magnetic resonance imaging was utilized to study the upper airway and surrounding soft tissue structures in 21 normal subjects, 21 snorer/mild apneic subjects, and 26 patients with obstructive sleep apnea. The major findings of this investigation in the 68 subjects were as follows: (1) minimum airway area was significantly smaller in apneic compared with normal subjects and occurred in the retropalatal region; (2) airway narrowing in apneic patients was predominantly in the lateral dimension; there was no significant difference in the anterior-posterior (AP) airway dimension between subject groups; and (3) distance between the rami of the mandible was equal between subject groups, and thus the narrowing of the lateral dimension was not explained by differences in bony structure; (4) lateral airway narrowing was explained predominantly by larger pharyngeal walls in apneic patients (the parapharyngeal fat pads were not closer together as one would expect if the airway walls were compressed by fat); and (5) fat pad size at the level of the minimum airway was not greater in apneic than normal subjects. At the minimum airway area, thickness of the lateral pharyngeal muscular walls rather than enlargement of the parapharyngeal fat pads was the predominant anatomic factor causing airway narrowing in apneic subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.