A combination of transient absorption (TA) and time-resolved photoluminescence (TRPL) spectroscopies performed on solution-phase samples of colloidal CdSe quantum dots (QDs) allows the construction of a time-resolved, charge carrier-resolved map of decay from the first excitonic state of the QD. Data from TA and TRPL yield the same six exponential components, with time constants ranging from ∼1 ps to 50 ns, for excitonic decay. Comparison of TA signals in the visible and near-infrared (NIR) spectral regions enables determination of the relative contributions of electron and hole dynamics to each decay component, and comparison of TA and TRPL reveals that each component represents a competition between radiative and nonradiative decay pathways. In total, these data suggest that the QD sample comprises at least three distinct populations that differ in both the radiative and nonradiative decay pathways available to the excitonic charge carriers, and provide evidence for multiple emissive excitonic states in which the hole is not in the valence band, but rather a relaxed or trapped state.
This manuscript describes a global regression analysis of near-infrared (NIR, 900-1300 nm) transient absorptions (TA) of colloidal CdSe quantum dots (QDs) photoexcited to their first (1S(e)1S(3/2)) excitonic state. Near-IR TA spectroscopy facilitates charge carrier-resolved analysis of excitonic decay of QDs because signals in the NIR are due exclusively to absorptions of photoexcited electrons and holes, as probe energies in this region are not high enough to induce absorptions across the optical bandgap that crowd the visible TA spectra. The response of each observed component of the excitonic decay to the presence of a hole-trapping ligand (1-octanethiol) and an electron-accepting ligand (1,4-benzoquinone), and comparison of time constants to those for recovery of the ground state bleaching feature in the visible TA spectrum, allow for the assignment of the components to (i) a 1.6 ps hole trapping process, (ii) 19 ps and 274 ps surface-mediated electron trapping processes, and (iii) a ∼5 ns recombination of untrapped electrons.
The ratio of Cd to Se (Cd/Se) within colloidal CdSe quantum dots (QDs) synthesized with 90% trioctylphosphine oxide (TOPO) as the coordinating solvent increases from 1.2:1 for QDs with radius R ≥ 3.3 nm to 6.5:1 for R = 1.9 nm, as measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The highest value of Cd/Se reported previously for CdSe QDs was 1.8:1. The dependence of Cd/Se on R fits a geometric model that describes the QDs as CdSe cores with Cd/Se = 1:1 encapsulated by a shell of Cd−organic complexes. Use of 99% TOPO as the coordinating solvent produces QDs with Cd/Se ≈ 1:1 for all values of R, and use of 99% TOPO “doped” with n-octylphosphonic acid (OPA), an impurity in 90% TOPO, produces QDs with values of Cd/Se up to 1.5:1. These results imply that Cd enrichment of the QDs is driven by tight-binding Cd2+−alkylphosphonate complexes that stabilize the interface between the polar CdSe core and the organic medium.
Replacement of the native (as-synthesized) ligands of colloidal CdSe QDs with varying concentrations of a series of para-substituted anilines (R-An), where R ranges from strongly electron-withdrawing to strongly electron-donating, decreases the PL of the QDs. The molar ratio of R-An to QD ([R-An]:[QD]) at which the PL decreases by 50% shifts by 4 orders of magnitude over the series R-An. The model employed to describe the data combines a Freundlich binding isotherm (which reflects the dependence of the binding affinity of the amine headgroups of R-An on the substituent R) with a function that describes the response of the PL to R-An ligands once they are bound at their equilibrium surface coverage. The latter function includes as a parameter the rate constant, k(nr), for nonradiative decay of the exciton at a site to which an R-An ligand is coordinated. The value of this parameter reveals that the predominant mechanism of QD-ligand interaction is passivation of Cd(2+) surface sites through sigma-donation for R-An ligands with R = H, Br, OCF(3), and reductive quenching through photoinduced hole transfer for R = MeO, (Me)(2)N.
A molecular level understanding of the photoreactivity of self-assembled monolayers (SAMs) becomes increasingly important as the spatial resolution starts to be limited by the size of the resist and the spatial extent of the photochemical reactions in photoresist micropatterning. To this end, a number of surface characterization techniques were combined to understand the reactive agents, reactive sites, kinetics, and reaction pathways in the UV photoreactivity of octadecylsiloxane (ODS) SAMs. Quantitative analysis of our results provides evidence that ground state atomic oxygen is the primary reactive agent for the UV degradation of ODS SAMs. UV degradation, which follows zero-order kinetics, results in the scission of alkyl chains instead of the siloxane headgroups. Our results suggest that the top of the ODS SAMs is the preferential reactive site. Using a novel, highly surface sensitive technique, fluorescence labeling of surface species, we identified the presence of submonolayer quantities chemical functional groups formed by the UV degradation. These groups are intermediates in a proposed mechanism based on hydrogen abstraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.